A nuclear explosion results in a complex combination of signals including radioactivity released to the environment, seismic, infrasound, and hydroacoustic. The International Monitoring System (IMS) was established to detect these signals and analysts around the world train in the interpretation of them. However, the unique combination of signals indicative of a nuclear explosion is only fully...
NDC Preparedness Exercises (NPE) are an opportunity to practice the verification procedures for the detection of nuclear explosions in the framework of CTBT monitoring. The NPE 2019 scenario was developed in close cooperation between the Italian NDC-RN (ENEA) and the German NDC (BGR). The fictitious state RAETIA announced a reactor incident with release of unspecified radionuclides into the...
One of the most important goals of any seismic network, is the ability to locate more accurately seismic events. Accordingly, accurate stations distribution, plays an important role for achieving that goal. In this study, we present a fully automated stochastic method for calculating the optimal station distribution inside a permanent/temporary seismic network. Using fuzzy self-tuned...
Infrasound has proven to be useful for localizing events, especially in the context of the CTBT. Among the usual approaches, the Bayesian inference is often favored as it provides the posterior probability density function (PDF) for source parameters. In these methodologies, propagation models are constructed by numerically propagating signals through a set of plausible atmospheric...
Infra-AUV is a new EU project that will establish primary measurements standards for low frequency phenomena across the fields of airborne and underwater acoustics and vibration (seismology). Combining expertise from the national measurement institutes and geophysical monitoring station operators, it will develop both high-precision laboratory-based methods of calibration and methods suitable...