

Correlating Shear Content in Seismic Source Functions to Scaled Depth-of-Burial for a Series of Buried Chemical Explosions

David Steedman and Ryan Modrak

2.3-141

The authors thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (DNN R&D), and the SPE working group, a multiinstitutional and interdisciplinary group of scientists and engineers. LA-UR- 21-24412

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBTO.ORG

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

Source Physics Experiment (SPE)

- SPE Phase I consisted of six chemical explosions at different scaled depth-of-burial (SDOB)
- A major goal was to identify sources of "excess" shear, which complicate discrimination criteria
- Another goal was to understand how seismic data vary with respect to scaled depth-ofburial, especially for deeply overburied events

SPE Granite Testbed

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

SPE near-field accelerometer records

- Accelerometers were placed ~15 m from the ٠ explosion borehole
- Interesting patterns emerge with respect to ٠ scaled depth-of-burial
- Radial motion corresponds to compressional ٠ waves (P-SV)
- Tangential motion corresponds to shear waves (SH)

Steedman et al., 2016, BSSA

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO PrepCom

0.010 Time (s)

0.015

0 720

0 005

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

Takeaway: a lot of shear wave release from moderately overburied explosions

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

Small tangential amplitude

Small tangential amplitude

Takeaway: very little shear wave release from nominally- and deeply-buried explosions

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

Proposed shear release mechanism and relationship with scaled depth-of-burial

- *Mechanism*: shear release occurs from preloaded joints due to passage of explosiongenerated shock wave
- Shear release is a function of (1) overburden stress
 (2) shock wave amplitude
- This dependence results in a distinctive SDOB pattern, shown in the notional model at right

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

Analysis of far-field geophone records supports notional SDOB model

- Plotted at right is L2 norm of transverse velocity trace divided by L2 norm of vertical velocity trace, with σ/N error bars and 2nd order polynomial fit
- Using all available geophones between 100 m – 500 m from source

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

Moment tensor preliminaries

A **moment tensor** is a weighted sum of force couples that together represent a seismic source; can be written as a symmetric matrix with 6 independent elements

Visualizing over 6D space is nontrivial; the

recently-developed **lune plotting device** allows for meaningful 2D visualization

M_{xx}	M_{xy}	M_{xz}
M_{yx}	M_{yy}	M_{yz}
M_{zx}	M_{zy}	M_{zz}

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

Mathematically, the location of a given moment tensor on the lune is determined by the eigenvalues of its symmetric matrix

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

In practice, the location of an individual seismic event on the lune represents a moment tensor solution obtained by comparing observed and synthetic seismic waveforms

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

 $\operatorname{misfit}(m) = \sum_{f} \int \left| dat(t) - syn(t - t_{off}; m) \right|^2 dt$ data and summation over compensates synthetics have stations and for unbeen filtered and components modeled 3D windowed (Z,R,T)structure

By evaluating this function over moment tensor space, we can get a visual sense of how uncertainty varies over moment tensor space...

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

Far-field moment tensor inversions supports notional SDOB model

- Using all available geophones
 within 2 km from source
- Color bar shows misfit variation; green circles mark maximum likelihood estimates

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

Summary

- Understanding shear release from underground explosions is important because many traditional discriminants involve shear-wave amplitudes
- Activation of pre-existing joints is one possible shear release mechanism, which would produce a distinctive pattern of shear-wave amplitude versus scaled depth-of-burial
- We have found patterns consistent with the above in SPE near-field records, far-field records, and moment tensor inversions
- These results establish the importance of joint unloading at distances of several kilometers from the source, further than previously known

David Steedman and Ryan Modrak, Los Alamos National Laboratory, rmodrak@lanl.gov

Implications and future work – By showing that joint unloading effects persist further than previously known, these results raise possible nuclear explosion monitoring implications

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO PrepCom

Steedman and Bradley, 2020, ARMA

CTBTO.ORG

PUTTING AN END TO NUCLEAR EXPLOSIONS