Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R Pinto & Tarun K. Chandrayadula
Department of Ocean Engineering, Indian Institute of Technology Madras

Presentation O1.3-513
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019
Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Figure: Hydrophones in the central Indian Ocean maintained by the Comprehensive Nuclear Test-Ban Treaty Organization

Figure: Average spectrogram of the unidentified Diego Garcia call
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Figure: Hydrophones in the central Indian Ocean maintained by the Comprehensive Nuclear Test-Ban Treaty Organization

Figure: Average spectrogram of the unidentified Diego Garcia call

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO.
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Figure: Average daily spectra at the north and south stations show the long-term frequency changes of the Diego Garcia call.
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Selected calls

Average spectrogram

Call subspace

Figure: The methodology used to build subspace detectors for the Diego Garcia call and the Omura whale call
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Figure: Average spectrogram of the unidentified Diego Garcia call

Matrix model for whale signal

\[x = H\theta + \text{noise} \]

\[H = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{bmatrix} \]
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Figure: Average spectrogram of the unidentified Diego Garcia call
The general seasonality of the Diego Garcia call:

- **North (gray):**
 November to February, sometimes March to June.

- **South (black):**
 June to November
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Figure: Tracking the call-frequencies using centroids in 1 Hz bands of the average call-periodograms
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Figure: Estimated call-frequencies of the Diego Garcia call at the North and South hydrophones

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Figure: Linear regression applied to the observed frequency changes
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Table: The rates of the Diego Garcia call-frequencies over the years

<table>
<thead>
<tr>
<th>Initial Frequency (Hz)</th>
<th>Rate of change (Hz/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>0.5580</td>
</tr>
<tr>
<td>41</td>
<td>0.7596</td>
</tr>
<tr>
<td>38</td>
<td>0.5566</td>
</tr>
<tr>
<td>35</td>
<td>0.4721</td>
</tr>
<tr>
<td>34</td>
<td>0.4081</td>
</tr>
<tr>
<td>33</td>
<td>0.4602</td>
</tr>
<tr>
<td>31</td>
<td>0.4691</td>
</tr>
<tr>
<td>30</td>
<td>0.5577</td>
</tr>
<tr>
<td>35</td>
<td>-0.3351</td>
</tr>
</tbody>
</table>

Figure: Call-frequency changes observed in other Indian and Southern Ocean whale species (Leroy et al., 2018)
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Figure: Daily averaged ambient noise levels over 15-60 Hz to investigate the relationship between ambient noise and the call-frequency changes over 2002-2019

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO.
Long-term observations of a potential great whale call from the central Indian Ocean during 2002-2019

Nikita R. Pinto & Tarun K. Chandrayadula, Indian Institute of Technology Madras

Figure: Annual one-minute spectral averages between 15 Hz and 60 Hz for each year between 2002 to 2019 for the north station (black), and the south station (gray).
Concluding remarks ... what is driving the call-frequency changes?

➢ Suggested hypotheses:
 1) frequency increase and decrease due to different pressures
 2) sound production mechanisms for the different frequencies are coupled together

➢ Investigating the relationship between frequency changes and migratory paths

Gratefully acknowledge the data from the CTBTO, and the financial support from the Naval Research Board (NRB) India