Seismic ocean thermometry using CTBTO hydrophone data

Wenbo Wu, Zhongwen Zhan,
Shirui Peng, Zhichao Shen, Joern Callies

California Institute of Technology
Seismic ocean thermometry using CTBTO hydrophone data

Ocean thermometry

- Argo floats have drastically improved the sampling
- They still suffer from the aliasing effects and have no data below 2000 m

Ocean absorbs more than 90% of the excess energy
Measuring the ocean temperature acoustically

Sound travels faster in warmer ocean.

\[
\frac{\partial \alpha}{\partial T} \approx 5 \text{ m s}^{-1} \text{K}^{-1}
\]

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO.
Replacing active sources with earthquakes

Seismic ocean thermometry using CTBTO hydrophone data

Protecting whales from the noise people make in the ocean
Dr Jessopp was recently involved in a research project to study the effects of marine seismic surveys on animals such as whales and dolphins.
Feb 28, 2020

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO
Seismic ocean thermometry using CTBTO hydrophone data

Application to Eastern Indian Ocean

Wu et al. (2020)

Trend: 0.044 ± 0.002 K decade$^{-1}$ 0.026 ± 0.001 K decade$^{-1}$ 0.039 ± 0.001 K decade$^{-1}$
Higher Signal-to-Noise Ratios (SNR) of CTBTO hydrophone data

The CTBTO hydrophones show higher SNRs and record much more T-wave data from small earthquakes than DGAR.
Consistent results between DGAR and H08S2
Seismic ocean thermometry using CTBTO hydrophone data

But much more data from H08S2

2648 earthquakes from H08S2
1060 earthquakes from DGAR

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO.
But much more data from H08S2
Seismic ocean thermometry using CTBTO hydrophone data

6-month periodicity

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO.
Seismic ocean thermometry using CTBTO hydrophone data

6-month periodicity

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO.
Seismic ocean thermometry using CTBTO hydrophone data

~10 days variations

![Graph showing travel time anomaly (s) vs. temperature anomaly (K) with data from DGAR and H08S2 from 2005-03-20 to 2005-04-29.]
Conclusions

- We confirm that hydrophones usually have better performance of recording T waves than T-phase stations, in terms of SNR.
- H08S2 and DGAR show consistent SOT results.
- Hydrophone system is a key component of global application of SOT.