

SMART Subsea Cables for Observing the Ocean and Earth: An Update

Bruce M. Howe

01.3-705

JTF SMART Cables University of Hawaii

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBTO.ORG

SMART Subsea Cables

Global Array: Climate, Oceans, Sea Level, Earthquakes, Tsunamis

Societal Benefits

Climate change – humanity's greatest existential threat

Societal and environmental issues

Sea level rise

UN Decade of Ocean Science

- Climate change - ocean temperature, circulation direct impact on societies, short and long term

Ocean **SDG 14**

UN

DRR

Disaster Risk Reduction – tsunami and earthquake monitoring throughout ocean basins and coastal margins

- Societal Connectivity - Enable progress with resilient and sustainable telecom infrastructure

Ocean Observing Tools

Adapted from Nerem, 2016

Temperature

Science and Early Warning - Observables

DARTs

Climate and Oceans

Hazards

Tsunami, Earthquake Warning

- SMART cables vastly increase existing ocean pressure/seismic sensors
- Improve tsunami warning precision, Reduce unnecessary warnings/evacuations.

Seismology

- SMART Seismic accelerometers → advance seismology:
- Detect, locate small guakes
- Rupture type and dynamics, larger offshore earthquakes
- Image Earth's interior

- below ocean floor

Ray samilin g/wi//h and without

SMART

- SMART → Subsurface temperature, EOV
- Deep ocean warming → sea level rise.
- Δ deep ocean temperature $\rightarrow \Delta$ circulation, Δ climate.

Circulation, sea level rise, mass distribution

- SMART Ocean bottom pressure (OBP, **eEOV** \rightarrow expansion, melting ice \rightarrow sea level change (x,t).
- Δ_x between OBP \rightarrow depth-averaged currents and ocean circulation.

SMART Cables

Innovative + Transformative + Audacious too!

- "Joint Venture" Science and \$5B/y cable industry, 150y
- Suppliers will provide SMART (e.g., ASN)
- Cable integrity societal connectivity
- Working within the UN system: ITU, WMO, IOC
- Research and Education Networks, e.g., GÉANT, RedCLARA, NORDUNet
- Systems at various stages:
 - Wet Demo/Sicily, Portugal, Indonesia, WesternMed, New Caledonia-Vanuatu, French Polynesia, New Zealand, Australia, India-Oman, Antarctica
 - Need to be engaged from the start of a project
- Start modest and simple KISS in all aspects
 - Technical, domestic/bilateral, regional
 - Set precedents for funding, permitting, legal, security
 - Work with all stakeholders

C/S Pierre De Fermat, Orange

SMART Cables – CAM2

- Domestic system with international connections
- Explicit seismic, tsunami, ocean, environment
- 3700 km, €120M
- Cost effectivelives and infrastructure
- RFP 2021
- RFS 2024

Concluding Remarks

- SMART Cables innovative path outside the "oceanography box"
- Transformative Technology enables science and early warning
- Unique observations of major importance with societal benefit
- Unlock the global deep ocean extend power and comms infrastructure into the ocean
- CTBTO:
 - A dense global array coverage ocean and climate, earthquakes and tsunamis
 - Planned and future sensors
 - Will improve IMS performance (hydroacoustic, seismic) with improved media
 - Technology similar learn from each other
 - SMART cables will contribute to and complement the CTBTO mission

SMART Cables for Observing the Global Ocean: Science and Implementation https://www.itu.int/en/ITU-T/climatechange/task-force-sc bhowe@Hawaii.edu