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Abstract The magnitude of postseismic slip is useful for constraining physical models of fault slip.
Here we examine the postseismic slip following intermediate-magnitude (M 4 to 5) earthquakes by
systematically analyzing data from borehole strainmeters in central and northern California. We assess
the noise in the data and identify 11 earthquakes that generated interpretable strain records. We estimate
the earthquakes’ postseismic to coseismic moment ratios by comparing the coseismic strain changes
with strain changes induced by afterslip in the following 1.5 days. The median estimated postseismic
moment is 0.45 times the coseismic moment, with a 90% confidence interval between 0.25 and 0.60. This
postseismic moment is slightly larger than typically observed following large (M > 6) earthquakes but
smaller than observed following small (M2 to 4) earthquakes. The intermediate-magnitude postseismic
slip suggests a size dependence in the dynamics of earthquakes or in the properties of fault areas that
surround earthquakes.

1. Introduction

Deformation in the hours to years following earthquakes accumulates via a range of processes, includ-
ing afterslip, poroelastic flow, and viscoelastic deformation. Afterslip is often inferred to cause most of the
deformation in the first few hours to months (Amoruso & Crescentini, 2009; Fukuda et al., 2009; Freed,
2007; Ryder et al., 2010). The afterslip that accumulates following large (M > 6) earthquakes typically
has moment equal to 10% to 30% of the coseismic moment (e.g., Cetin et al., 2012; D'Agostino et al., 2012;
Donnellan & Lyzenga, 1998; Gahalaut et al., 2008; Gonzalez-Ortega et al., 2014; Johanson & Biirgmann,
2010; Lin et al., 2013; Segall et al., 2000), though afterslip moments for individual earthquakes range from a
few percent to several hundred percent of the coseismic moment (e.g., Biirgmann et al., 2001; Dogan et al.,
2014; Freed, 2007; Langbein et al., 2006; Paul et al., 2007).

While afterslip moments vary, the postseismic to coseismic moment ratios estimated for large earthquakes
show no systematic trend with magnitude (see Fattahi et al., 2015, Lin et al., 2013, and Figure 4 for
summaries). The inferred magnitude-independent afterslip is consistent with a self-similar model of earth-
quakes, where large earthquakes are scaled versions of smaller ones. However, it has also been proposed
that smaller earthquakes have larger afterslip, as such large afterslip could help explain the long recurrence
intervals of small repeating earthquakes (Chen & Lapusta, 2009), and geodetic analysis of small (M 1.9 to
3.5) earthquakes near San Juan Bautista, CA, revealed afterslip with moment roughly equal to the coseismic
moment, on average (Hawthorne et al., 2016). Those large afterslip moments could simply indicate that the
frictional properties of the San Andreas Fault near San Juan Bautista are unusual and more prone to large
afterslip. Afterslip with moment 1.5 to 3 times the coseismic moment was identified following several larger
earthquakes in the area: the 2004 M 6 Parkfield earthquake (Barbot et al., 2009; Freed, 2007; Langbein et al.,
2006), the 2007 M 5.4 Alum Rock earthquake (Murray-Moraleda & Simpson, 2009), and the 1998 M 5.1 San
Juan Bautista earthquake (Taira et al., 2014).

But the large afterslip moments identified following M < 3.5 earthquakes could also indicate that the
self-similar scaling of earthquakes breaks down as earthquakes become smaller. For instance, the afterslip
moment could change as earthquake rupture extents become similar to the minimum earthquake nucleation
size and thus become too small to drive more rapid slip (Chen & Lapusta, 2009). Alternatively, the afterslip
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Figure 1. (a) Map of the central San Andreas Fault system in California. In
all plots, black triangles are strainmeter locations, yellow stars are the
earthquakes for which we estimate postseismic signals, blue circles are
cities, and the red lines mark plate boundaries. (b, ¢, and d) Maps of the
three clusters of strainmeters. Note that the marker for SJT is behind the
central group of earthquakes in panel c.

We examine data from 12 strainmeters located along the San Andreas
Fault in California, shown in Figure 1. More than half of the high-quality
earthquake records will come from strainmeter SIT, which was installed
by the USGS in 1983 at the northern end of the central creeping section
(Gladwin et al., 1987). The remaining records come from strainmeters
that were installed by UNAVCO as part of the Plate Boundary Observatory
(PBO). We consider data from 11 PBO strainmeters installed between 2006 and 2008. Strainmeters B073,
B075, B076, B078, and B079 are located near Parkfield, at the southern edge of the central creeping section,
while strainmeters B058, B065, and B067 are located near San Juan Bautista, at the northern edge of the
central creeping section, and strainmeters B045, B934, and B935 are located close to the Mendocino triple
junction, near another creeping section of the San Andreas.

Small earthquakes occur frequently along these creeping sections, mostly at depths of 4 to 15 km (e.g.,
Irwin & Barnes, 1975; Waldhauser & Schaff, 2008). We begin our analysis by identifying all M 4 to 6 earth-
quakes that occurred within 30 km of the strainmeters while the strainmeters were operating, as recorded
in the NCSN catalog up until 2017. This identification recovers 112 potential earthquake-station pairs, or
336 potential strain records, as each strainmeter records three components of strain. However, we find in
section 5 that only 35 earthquake-station pairs display well-resolved coseismic offsets. Of these 35, only 17
pairs are uncontaminated by creep events or nearby earthquakes, and only 13 pairs, which cover 11 unique
earthquakes, have low enough noise level that we can usefully assess the magnitude of postseismic defor-
mation. We describe each step of our data selection and analysis below as well as in Figure S20 in the
supporting information.

3. Initial Data Processing: Removing Nontectonic Signals

The deformation produced by coseismic and postseismic slip is recorded at the strainmeters via three to
four horizontal extensometers, which are located at depths of 150 to 250 m and measure changes in the
horizontal borehole width at various azimuths. SJT records deformation at 18-min intervals, and we use data
with 10-min sampling from the PBO strainmeters. We convert the extensometer measurements to estimates
of the horizontal components of strain (e , v, £5_ 5, and &,5y) using tidal calibrations derived by J. Langbein
for strainmeter SJT and by Hodgkinson et al. (2013) for the PBO strainmeters.
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‘We will directly analyze the time series of €, y, €5 _ y, and e,y recorded
at strainmeter SJT. But for the PBO strainmeters, we analyze different lin-
o ear combinations of these strain components. All the strain components
are recorded with high instrumental precision, less than 1 nanostrain,
but the various components of strain have different sensitivity to atmo-
spheric and hydrologic noise, so we follow the procedure described by
Hawthorne et al. (2016) to identify linear combinations of e, y, €5 _y,

o

strain at B067 (x107)
o
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and &, thatare normally less noisy: those that have minimal response to
atmospheric pressure variations. We refer to the linear combinations that
are closest to the original components as e, , n_ 45 €5 - N — na» A0 €555 _ pas
and we will analyze all three time series at the PBO strainmeters, though
we note that only two of these three components are independent. The
third component is a linear combination of the first two.

Having isolated the strain components of interest, we estimate and

strain at SJT (x108)

remove several nontectonic signals from each time series following
a standard approach (e.g., Hart et al.,, 1996; Hawthorne et al., 2016;
Langbein, 2010; Roeloffs, 2010). To remove borehole curing signals, we
discard the first 18 months of data at each station and then fit and remove
a linear trend and a decaying exponential with time constant around
1 year. Then we estimate and remove shorter-timescale nontectonic vari-
ations. We compare the tidal model of Cartwright and Edden (1973) with
the data and identify tidal frequencies that are likely to have signals with
amplitudes of at least 0.5 times the noise level. We estimate best-fitting
sinusoids at those frequencies and remove them. At SIT, we also estimate
and remove a linear response to atmospheric pressure and a periodic 3-hr
signal that is likely instrumental noise, as identified by Hawthorne et al.
(2016). Further details on this nontectonic correction procedure are given

2 1
time since earthquake (days)

Figure 2. Illustrative records of co- and postseismic strain for (a) a M 4.2

6 1 2 by Hawthorne et al. (2016).

4. Interpreting Strain Records: A Few Examples

earthquake on 20-Nov-2014, recorded at B067 and located 5 km NE of the  After removing these nontectonic signals, we can analyze the earthquake-

strainmeter at 6 km depth and (b) a M 4.0 earthquake on 11-Feb-2001,
recorded at SJT and located 5 km SE of the strainmeter at 6 km depth.

and afterslip-induced strain. We begin with two examples of the coseismic
and postseismic strain, as shown in Figure 2. Additional records are in
Figures S1-S17 and S19. Figure 2a shows high-quality records of a M 4.2
earthquake located about 5 km NE of strainmeter B067. Figure S22 shows the records in more detail. In
both figures, an abrupt coseismic strain step is followed by the gradual accumulation of postseismic strain
over the 2 days shown. Figure 2b shows a similar record of a M 4.0 earthquake located about 5 km SE of
strainmeter SJT, but here the signal-to-noise ratio is lower.

In our modeling, we will assume that the postseismic strain is created by afterslip. If afterslip occurs in
an area within 1 to 2 earthquake radii of the earthquake rupture, as is usually observed following large
earthquakes (D'Agostino et al., 2012; Ryder et al., 2007), and if the earthquake radius is small relative to
the earthquake-strainmeter distance, then the coseismic and postseismic slip should appear colocated from
the perspective of the strain observations. In other words, the coseeismic and postseismic slip should have
approximately the same Green's functions. Such similar Green's functions are consistent with the data for
the earthquakes shown in Figures 2 and S22. The ratio of postseismic to coseismic strain is similar on the
three strain components, as is expected if the strains are given by multiplying the coseismic and postseismic
moments by the same Green's functions.

In this study, we are interested in the ratio of the postseismic moment to the coseismic moment. If the Green's
functions are the same, the moment ratio can be obtained simply by dividing the postseismic strain by the
coseismic strain. In Figure 2a, for instance, we may note that the postseismic strains accumulated within
1.5 days of the earthquake have magnitude about 20% of the coseismic strains. Such strain ratios suggest that
the afterslip moment accumulated within 1.5 days of the earthquake is about 20% of the coseismic moment.
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5. Identifying Interpretable Strain Records

We would like to examine the postseismic and coseismic strain records following as many earthquakes as
possible. As a first step, we search for M 4 to 5 earthquakes located within 30 km of the strainmeters, and
we identify 112 potential earthquake-station pairs. However, most of these records are not interpretable. In
our initial culling of the data, we exclude noisy records. We visually examine the 112 records and retain only
35 of them: those where the coseismic offset is well resolved on at least one component. This selection does
not bias our analysis toward small postseismic to coseismic moment ratios because the noise in the strain
data has a random walk character (Hawthorne & Rubin, 2013; Langbein & Johnson, 1997). The uncertainty
in the postseismic strain accumulation, which occurs over a few days, is larger than the uncertainty in the
coseismic strain accumulation. For the postseismic strain to be resolvable when the coseismic strain is not,
it would have to be about 10 times larger than the coseismic strain.

We do not analyze all records with well-resolved coseismic offsets. Some are too complex to interpret because
they clearly include abrupt or large noise signals, occur within earthquake clusters, or trigger creep events.
Creep events on the shallow San Andreas Fault are hour- to day-long intervals when part of the fault accel-
erates to rates of order millimeters to centimeters per hour (Bilham et al., 2004; Gladwin et al., 1994; Schulz
et al., 1983; Schulz, 1989; Thurber & Sessions, 1998). In principle, creep events triggered by earthquakes can
be classified as afterslip (e.g., Floyd et al., 2016; Fukuda et al., 2009; Langbein et al., 2006). We choose to
exclude creep events from our analysis for two reasons. First, it is unclear whether the fault zone processes
that create triggered creep events are the same as the processes that usually create afterslip. The spon-
taneous occurrence of creep events suggests a slip rate-weakening rheology that drives acceleration (e.g.,
Belardinelli, 1997; Wei et al., 2013) while afterslip is often modeled with a slip rate-strengthening rheology,
so that increased slip rates are driven exclusively by the imposed coseismic stress (Helmstetter & Shaw, 2009;
Marone et al., 1991; Perfettini & Avouac, 2004).

Second, and more importantly, we exclude creep events because it is difficult to estimate their moments.
As noted above, we can estimate the relative moment of afterslip that is located close to the coseismic slip
simply by computing the ratio of the postseismic to coseismic strain. But to estimate the relative moment
of the triggered creep events, we would need to account for the difference in Green's functions between the
coseismic rupture and the creep event slip, and we do not know the creep event locations or the Green's
functions well enough to account for that difference. So we identify creep events by (1) looking at the nearby
surface USGS creepmeter records and (2) examining how the postseismic to coseismic strain ratio varies
among the different components of strain. In the end, we exclude 18 of the 35 earthquake records because
of noise, earthquake clusters, and nearby creep events. The excluded earthquakes are listed in Table S2.

6. Estimates of Postseismic Strain

6.1. Primary Analysis

After identifying earthquakes with well-resolved coseismic steps and excluding those with visible creep
events, we are left with records from 17 earthquake-station pairs which cover 14 independent earthquakes.
We will estimate the coseismic and postseismic strain associated with each of these earthquakes. But first,
we estimate and remove a preearthquake linear trend that may result from seasonal or hydrological noise.
We estimate the linear trend by dividing the change in strain between 2 days and 5 hr before the earthquake
by that time interval (43 hr). This offset-over-time approach to determining offsets and trends is appropri-
ate for the random walk noise that characterizes the strain data (Hawthorne & Rubin, 2013; Langbein &
Johnson, 1997).

After removing the preearthquake trend, we estimate the coseismic and postseismic strain changes using
each of the three strain components that recorded the earthquake. The coseismic strain change is defined as
the strain accumulated within the 40-min interval centered on the earthquake time. Where needed, we lin-
early interpolate from existing data points to obtain the strain 20 min before and after the earthquakes. The
40-min coseismic interval allows us to identify the entire coseismic strain step from the 10- to 18-min data.

The postseismic strain change is defined as the strain that accumulates between 20 min and 1.5 days after
the earthquake. The 1.5-day interval is chosen as a compromise between signal and noise. One and a half
days is long enough to allow significant strain signal to accumulate; we seek to examine an interval signif-
icantly longer than a few hours because Hawthorne et al. (2016) found that postseismic moment following
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Figure 3. (a) Observed ratios of the postseismic strain changes, from 20 min to 1.5 days after the earthquakes, to the
coseismic strain changes, from 20 min before to 20 min after the earthquakes. Each measurement comes from one
component at one strainmeter, as indicated by color and symbol. Error bars indicate 70% uncertainty ranges. Note that
we randomly shift the magnitudes by up to 0.015 to avoid plotting points on top of each other. (b) Per-earthquake
postseismic to coseismic strain ratios with 70% uncertainty ranges, estimated by taking the median of the
per-component observations made for each event. (c) Vertical black line: median of the 11 per-earthquake postseismic
to coseismic strain ratios plotted in panel b. Shaded gray region: probability distribution for the median postseismic to
coseismic strain ratio, obtained by considering various realizations of the noise. Vertical dash-dotted lines delimit 90%
confidence intervals. (d) Crosses and error bars: median moment ratios and 90% confidence intervals obtained after
excluding one earthquake. The excluded earthquakes' magnitudes are shown on the x axis. For comparison, the
horizontal solid and dash-dotted lines indicate the median and 90% confidence intervals obtained when including all
11 earthquakes.

M < 3.5 earthquakes near strainmeter SJIT accumulated relatively slowly in the first 2 to 4 hr before follow-
ing a log(time) accumulation in the next 1.5 days. We also see accumulation slower than log(time) in the
hours following the best-resolved earthquake in our data set (Figure S2). We cannot examine a time interval
too much longer than a few hours, however, as the data become more contaminated by atmospheric and
hydrologic noise when longer time periods are considered. We choose a 1.5-day postseismic period because it
will allow us to analyze well-resolved signals from about 10 earthquakes. We note, however, that significant
deformation could accumulate outside of our 1.5-day analysis period. For instance, if postseismic moment
accumulates as the logarithm of time ¢ (e.g., Hsu et al., 2006; Perfettini & Avouac, 2004) between 2 hr and
6 months after these earthquakes, 60% of the moment may accumulate after 1.5-days.

We compute the ratios of the 1.5-day postseismic strain to the 20-min coseismic strain on each component
and take these ratios as estimates of ratio of the postseismic to coseismic moments. To assess how well
resolved each postseismic moment ratio is, we examine how it would change if noise were added. We ran-
domly pick 3,000 4-day-long intervals of the strain time series to use as 3,000 realizations of the noise. We
add each realization to the strain data of interest, compute and subtract a preearthquake trend, extract the
coseismic and postseismic strain changes, and calculate their ratio. With this approach, we obtain a proba-
bility distribution for the moment ratio extracted from each individual strain record. Ratios extracted from
the various earthquake, station, and component combinations are plotted in Figure 3a and listed in Table S1.
Error bars indicate 70% confidence intervals. Not all of the postseismic moment ratios are plotted, however.
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We plot and will further examine only the ratios that have reasonably low uncertainty ranges: those where
70% of the noise-perturbed ratios fall within a range smaller than 2 (e.g., between 0 and 2, or between
0.5 and 2.5). These uncertainty requirements leave us with 33 component-derived ratios, estimated using
13 earthquake-station pairs that cover 11 unique earthquakes. Most of these per-component ratios cluster
between 0 and 1.

Simply considering the per-component strain ratios overweights some earthquakes, however: those that are
measured on multiple components or strainmeters. So we compute a strain ratio per earthquake by tak-
ing the median of the values estimated on the various components and strainmeters. These per-earthquake
strain ratios are our best estimates of the earthquakes' postseismic to coseismic moment ratios, and we
plot them in Figure 3b. We also estimate probability distributions for the per-earthquake moment ratios
by extracting and averaging over sets of values from the per-component probability distributions described
in the last paragraph. The error bars in Figure 3b indicate 70% confidence intervals on the per-earthquake
moment ratios.

Nine of the 11 best-fitting moment ratios are between 0.2 and 0.8. One earthquake appears to have especially
large postseismic slip, with a best-fitting postseismic moment ratio of 1.5, but we should note that its 70%
confidence ranges allows values between 0.7 and 2, and given that we estimate postseismic moment ratios
for 11 earthquakes, it is likely that the true ratio from at least one moment estimate will fall outside its 90%
confidence ranges. It is difficult to resolve variations in postseismic moment among earthquakes with this
data set.

It may be more appropriate, then, to focus on estimating the “typical” behavior of these M 4 to 5 earth-
quakes. Specifically, we note that the median postseismic to coseismic moment ratio is 0.45. To determine
the uncertainty on the median ratio, we randomly pick sets of values from the probability distributions for
each earthquake. We pick 5,000 sets of ratios and estimate their earthquake-grouped medians. A histogram
of the 5,000 ratio estimates is shown in Figure 3c. The probability distribution implies that the median
postseismic moment ratio is between 0.31 and 0.54 with 70% probability and between 0.25 and 0.60 with
90% probability.

6.2. Sensitivity to Earthquakes Included

This estimate of the median ratio includes values from two potentially problematic earthquakes, which
are marked with open symbols in Figures 3a and 3b. One of the earthquakes, a M 4.9 that occurred in
January 1993, displays negative strain ratios on two components, and the 70% confidence interval on the ratio
estimated from the third component does not overlap with the ratios of the first two. Such variable strain
ratios are inconsistent with afterslip, as afterslip that occurs close to the earthquake should have the same
Green's functions as the coseismic slip. The apparently variable ratios observed for this earthquake could
simply result from noise, however. These ratios could be 2 ¢ outliers in the tails of the noise distribution
or represent time intervals of especially large hydrologic noise induced by large rainfall in January 1993
(Figures S3 and S18).

Nevertheless, the ratios from this M 4.9 earthquake seem unlikely to represent interpretable postseismic
moment estimates, so we consider how excluding this earthquake affects our estimate of the median post-
seismic moment ratio. The rightmost cross and error bar in Figure 3d show the median moment ratio and
90% error bars obtained after excluding this event. The other symbols indicate the ratios obtained after
excluding each of the other 10 earthquakes, one at a time. The median moment ratios differ from the
all-event estimate only marginally. They are between 0.36 and 0.49, with 90% confidence intervals that fall
between 0.22 and 0.65.

The confidence intervals also change only slightly if we exclude earthquakes whose ratio measurements
are inconsistent with afterslip: those where the ratios estimated on individual components differ from the
median ratio among components with 70% probability. There are only two such earthquakes: the M 4.9
discussed above and the other M 4.9 marked with open symbols in Figures 3a and 3b, which occurred in
April 1996. After excluding these earthquakes, we estimate a median postseismic moment ratio of 0.45 and
a 90% confidence interval of 0.25 to 0.67.
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Figure 4. Postseismic to coseismic moment ratios for earthquakes with a range of magnitudes. Note that nonzero
values range from 0.02 to 7 and are plotted on a log scale. Zero values are plotted below the break. The small red open
circles are the per-earthquake ratios from this study, and the large red circle with error bars is the earthquake-averaged
median with 90% uncertainty ranges vertically and the range of magnitudes horizontally. The blue circles with error
bars on the left are the moment ratios obtained by Hawthorne et al. (2016) for small earthquakes near San Juan
Bautista, again with 90% uncertainty ranges vertically and the range of magnitudes horizontally. The points on the
right come from some of the numerous studies of intermediate and large-magnitude earthquakes, mostly made over
timescales of days to years. These studies and their observation time intervals are listed and numbered in the text and
in Table S3. Note that we sometimes plot multiple postseismic moment estimates for a single earthquake. These
estimates come from observations over different time intervals or from different studies and are indicated by points
with common color, symbol, and magnitude value.

7. Discussion

7.1. Comparison With Smaller and Larger Earthquakes

The postseismic to coseismic moment ratios estimated in this study are plotted along with the ratios inferred
for smaller and larger earthquakes in Figure 4. The postseismic moments for smaller (M < 3.5) earthquakes
were obtained over the same time interval considered here: from 20 min to 1.5 days after the earthquakes
(Hawthorne et al., 2016). The postseismic observations of larger earthquakes were made by a range of
researchers over a range of timescales, from days to years after the earthquakes, as listed in Table S3. The
large-event moment ratios come from 35 earthquakes numbered in Figure 4, from the 1: 2005 Chaman
(Furuya & Satyabala, 2008), 2: 2008 Mogul, NV swarm (Bell et al., 2012), 3: 1998 San Juan Bautista (Taira
et al., 2014), 4: 2007 Alum Rock, CA (Murray-Moraleda & Simpson, 2009), 5: 2007 Ghazaband (Fattahi
et al., 2015), 6: 2004 Parkfield (Freed, 2007; Langbein et al., 2006), 7: 2014 South Napa (Amoruso & Cres-
centini, 2009; Cheloni et al., 2010; Floyd et al., 2016), 8: 2009 L'Aquila (D'Agostino et al., 2012), 9: 2008
Nima-Gaize, Tibet (Ryder et al., 2010), 10: 2000 Iceland (J6nsson, 2008), 11: 2003 San Simeon (Johanson &
Biirgmann, 2010), 12: 2003 Zemmouri (Cetin et al., 2012; Mahsas et al., 2008), 13: 1989 Loma Prieta (Segall
et al., 2000), 14: 1991 Racha, Georgia (Podgorski et al., 2007), 15: 1999 Hector Mine (Jacobs et al., 2002),
16: 2003 Altai (Barbot et al., 2008), 17: 2010 El Mayor-Cucapah (Gonzalez-Ortega et al., 2014), 18: 2011 Van
(Dogan et al., 2014), 19: 1992 Landers (Savage & Svarc, 1997), 20: 1997 Manyi, Tibet (Ryder et al., 2007), 21:
2012 Nicoya (Hobbs et al., 2017; Malservisi et al., 2015), 22: 1994 Sanriku (Heki et al., 1997; Melbourne et al.,
2002), 23: 2015 Gorkha (Sreejith et al., 2016), 24: 2001 Kokoxili, Tibet (Wen et al., 2012), 25: 1997 Kronotsky
(Biirgmann et al., 2001), 26: 2016 Pedernales (Rolandone et al., 2018), 27: 2008 Wenchuan (Diao et al., 2018),
28: 1995 Jalisco (Melbourne et al., 2002), 29: 2003 Tokachi-Oki (Miura et al., 2004), 30: 1995 Antofagasta
(Melbourne et al., 2002; Pritchard & Simons, 2006), 31: 2015 Illapel (Shrivastava et al., 2016), 32: 2001 Peru
(Melbourne et al., 2002), 33: 2005 Nias (Hsu et al., 2006), 34: 2010 Maule (Lin et al., 2013), and 35: 2004
Sumatra (Chlieh et al., 2007; Subarya et al., 2006).

Most observations of afterslip following large (M > 6) earthquakes suggest postseismic to coseismic
moment ratios less than 0.3, slightly smaller than the 0.45 median ratio that we estimate for M 4 to 5 earth-
quakes. The postseismic moments reported for M 5 to 6 earthquakes are larger, between 0.5 and 6. But the
high values for M 5 to 6 earthquakes could result from observational bias; smaller postseismic moments may
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not be reported because they would be harder to observe. More interestingly, then, we note that the post-
seismic moment ratios estimated for smaller (M < 3.5) earthquakes are also slightly larger than the ratios
obtained here. The M < 3.5 earthquakes have average moment ratios clustered around 1 (Hawthorne et al.,
2016) while our median moment ratio has 90% confidence intervals between 0.25 and 0.60.

7.2. Potential Physical Explanations

There are several possible explanations for the observed variation in postseismic moment with magnitude.
First, the varying postseismic moments could reflect fault properties. Smaller earthquakes may be more
likely to occur on creeping sections of faults, perhaps on asperities surrounded by velocity-strengthening
fault sections that are more prone to large postseismic slip (e.g., Rolandone et al., 2018; Vaca et al., 2018). The
postseismic moment estimates for M < 3.5 earthquakes all come from a single 20-km-wide fault segment
near San Juan Bautista, CA, which could have particular properties (Hawthorne et al., 2016). But most of the
earthquakes investigated here come from that same fault segment, and half are obtained from measurements
on the same strainmeter, SJT (see Figures S1 to S9 for the time series).

Both our and Hawthorne et al., 2016's (2016) moment estimates could be somewhat contaminated by creep
events that cause larger-than-expected strain signals: by afterslip occurring far from the seismic rupture,
perhaps close to the surface. We have excluded strain signals that are inconsistent with afterslip occurring
near the seismic rupture, but given the noise level in the data, we cannot be sure that we have excluded all
of the creep event records.

It seems unlikely that other physical processes create much of the postseismic deformation we observe.
Significant viscoelastic deformation is usually observed only on timescales much longer than 1.5 days (e.g.,
Bruhat et al., 2011; Johnson et al., 2009; Pollitz et al., 2006). Poroelastic deformation can accumulate more
quickly, but it typically has smaller magnitude, just a few percent of the coseismic deformation (Jénsson
et al., 2003; Peltzer et al., 1996; 1998) unless there is a nonlinear near-surface response (e.g., Chia et al.,
2001; Manga & Wang, 2007; Quilty & Roeloffs, 1997; Wang et al., 2004) or near-borehole deformation due
to shaking (Barbour et al., 2015), and Hawthorne et al. (2016) identified no strong near-surface response to
passing seismic waves or to creep events in the San Juan Bautista region or at strainmeter SJT.

Assuming, then, that the postseismic deformation reflects afterslip, the magnitude-dependent moment
ratios could reflect the time intervals in which we observe that afterslip. Postseismic moment is often
observed and modeled to accumulate as log of the time ¢ since the earthquake, or at a rate of 1/¢ (Cakir
et al., 2012; Hsu et al., 2006; Ingleby & Wright, 2017; Perfettini & Avouac, 2004). That decay rate itself does
not explain the intermagnitude differences, as the differences persist when we normalize by the log of the
observation time interval (Figure S21). But the normalized moments could vary or if we or others observe
deformation before the moment starts to accumulate as log(time). The moment accumulation may be slower
than log(time) at short times after the earthquake if the slipping region takes time to grow outward from the
coseismic rupture (Ariyoshi et al., 2009; Dublanchet et al., 2013a, 2013b; Lui & Lapusta, 2016, Perfettini &
Ampuero, 2008) or if the fault takes time to accelerate in response to the coseismic stress increase (Marone
et al., 1991; Montési, 2004; Perfettini & Avouac, 2004; Savage, 2007). The intermagnitude differences could
also arise if moment does not accumulate logarithmically, but exponentially (e.g., D'Agostino et al., 2012;
Savage & Svarc, 1997; Shen et al., 1994), and if the characteristic accumulation interval varies relative to our
observation times.

The coseismic rupture geometry can also influence the magnitude of postseismic slip. Small earthquakes
tend to be more circular (e.g., Abercrombie, 1995; Gomberg et al., 2016; Scholz, 1982; Shaw, 2013) and thus
may have a larger perimeter-to-area ratio and a larger region close to the coseismic rupture that can experi-
ence and respond to strong coseismic stress changes (Hawthorne et al., 2016). However, the transition from
circular to rectangular ruptures is typically inferred to occur when ruptures first start to span the seismo-
genic zone, at a magnitude around 6 or 7. We observe a change in postseismic moment between M < 3.5
earthquakes and M 4 to 5 earthquakes.

Alternatively, the magnitude-dependent postseismic moments could reflect a more fundamental property
of earthquake dynamics. For instance, Chen and Lapusta (2009) identified large postseismic slip in rate and
state friction models of earthquakes occurring on small asperities, on patches that were not much wider
than the earthquake nucleation size. The large afterslip arose because portions of the potentially unstable
asperities did not rupture in the earthquakes and instead slipped via aseismic afterslip.
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8. Conclusions

As observations of postseismic slip continue to accumulate, the ratio of postseismic to coseismic moment
may become an important constraint on physical models of earthquake rupture. The postseismic moment
ratios will complement observations of coseismic stress drops. Coseismic stress drops are usually found to be
magnitude independent and suggest that earthquakes are self-similar: that large earthquakes are scaled-up
small earthquakes. In this study, we have made observations that appear to contradict self-similarity. The
median postseismic moment estimated for the 11 well-resolved M 4 to 5 earthquakes is 0.45 (0.25 to 0.60 with
90% probability). This afterslip moment of these intermediate-magnitude moments is intermediate relative
to previous observations; it is slightly larger than is typical of M > 6 earthquakes and slightly smaller than
observed for M < 3.5 earthquakes.
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