Monitoring sub-seafloor deformation in plate subduction zone Shuichi Kodaira (JAMSTEC) AMSTE In collaboration with Eiichiro Araki, Takane Hori, Gou Fujie, Ayako Nakanishi

Google

Nankai Trough seismogenic zone

Hyodo et al. 2016

- Records of large earthquakes are welldocumented in historical literatures in the last 1400 years
- Palaeoseismological data can be traced back to ~4000 years ago

1854 Ansei Earthquake (Osaka Museum of History)

Nankai Trough seismogenic zone

- Records of large earthquakes are welldocumented in historical literatures in the last 1400 years
- Palaeoseismological data can be traced back to ~4000 years ago
- Earthquake intervals are fluctuated between 90 – 260 years
- In each cycle, either a pair of earthquakes occurred or a single earthquake ruptured the entire region
- Those diversities makes it difficult to estimate a future earthquakes based on historical data

Nankai Trough seismogenic zone

Obara & Kato 2016

- Slow slip events: characteristic time scale of interval and duration varies from 10² years ~ 10 seconds
- To capture wide spectrum of slip behaviors, real-time continuous geodetic monitoring is necessary

Toward understanding slip behavior and its temporal evolution - what JAMSTEC are doing and plan to do -

- construct seafloor geodetic network using DONET cable system
- install borehole observatory by BMS on R/V KAIMEI and/or D/V Chikyu
- calibrate all DONET pressure sensors to utilize them as geodetic sensors,
- develop fiber optic sensors to connect DONET

Current status - real-time continuous geodetic data

Frequently recurring (8 events/6 years) shallow Slow Slip Events are discovered from seafloor borehole records. Those events would release 30-55% of strain due to plate subduction.

Toward understanding slip behavior and its temporal evolution - what JAMSTEC are doing and plan to do -

Utilize DONET pressure sensor as geodetic sensor

Developed Mobile pressure calibrator to carry out *in-situ* calibration of DONET pressure sensors for estimating a drift rate

 calibrated a pressure sensor at DONET2, 2C-10, with resolution of less than 1 hPa, estimated drift component is 2.2 hPa/6months,
Araki et al. 2019 AGU, Machida et al. 2020 JpGU

Fiber Optic Technologies applied to the Seafloor Network

 Shallow borehole optical tiltmeter

2021-05-21 UTC Qinghai, China, Mw 7.3 D=10.0 km

• Fiber optic strain sensor

 Distributed Acoustic Sensing (DAS)

Hydro-acoustic signal form air-gun shots

Micro to large earthquakes are also observed

Realistic 3D seismogenic zone model is necessary to transform seafloor/sub-seafloor deformation to plate boundary slips

An overall velocity and plate geometry model by smoothly interpolating ~30 km spacing 2D profiles. Plate boundary geometry of the offshore seismogenic zone have not been resolved.

Toward understanding plate coupling and its temporal evolution - what JAMSTEC are doing and plan to do -

- Large-scale 3D imaging and high-resolution OBS imaging
- to construct a 3D multi-parameters model of the seismogenic zone

Current status - R/V KAIMEI dense 2D MCS survey to construct 3D model-

Preliminarily results of the 2018- and 2019-surveys (Nakamura et al. 2020, JpGU)

basement is observed, due to subduction of a seamount

Modeling approach

Most of modeling approaches use a homogeneous half-space medium to estimate plate slip from seafloor displacement

 In order to fully utilize the seafloor geodetic data and the 3D model, it's necessary to develop a modeling technique to implement 3D inhomogeneous and viscoelastic medium with fine-mesh finite-element method

Toward understanding slip behavior and its temporal evolution

These research approaches and technological developments can be applied to the observation and characterization of dynamic processes in the Earth's interior, including a man-made process

Slip and coupling at the present