P1.1-672: Unusual infrasound observations from the August 2020 Beirut explosion

Jelle Assink - KNMI R&D Seismology and Acoustics

Roger Waxler, Phil Blom, Gil Averbuch, Shahar Shani-Kadmiel, Läslo Evers, Yochai Ben Horin

SnT 2021 - Online

Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

Delft University of Technology

Background

- A warehouse of ammonium nitrite exploded on 4 August 2020, leading to loss of life and property
 - One of the most powerful artificial non-nuclear explosions in history
- Blast wave was widely felt and heard
 - Audible as far as Cyprus (240 km)
 - Acoustic arrivals detected on seismometers
 - USGS seismic event with m_L 3.3
- Seismo-acoustic source has been characterized elsewhere
 - Pilger et al., Sci. Rep. (under review)
 - Yield estimate 0.5-1.1 kT TNT eq.
 - InSAR derived damage maps

Infrasonic detection over the Euro-Mediterranean region

- Infrasound detections on I17Cl (Ivory Coast, 5129 km), I42PT (Azores, 5605 km) and I11CV (Cape Verde, 6206 km)
- This presentation: focus on propagation towards IMAR / I26DE / I48TN / PSZI / IPLOR
- Signals on distant arrays show characteristics that are unusual of long-range summertime propagation conditions

Observations in Israel

- IMAR (100 km): direct wave, followed by reflections from middle atmospheric layers
- Dimona (I0BR) (323 km): Stratospheric and thermospheric refractions buried in the noise

Comparison between two arrays at 2400 km

- Signals with tropospheric celerities were observed at I48TN (Tunisia) and I26DE (S Germany)
- The fastest arrivals at IS26 and PSZI appear to have significant back azimuthal scatter
- At I26DE (and PSZI) curious trace velocity trends are observed, from high to low

Comparison PSZI and I26DE

- Signals with tropospheric celerities were observed at PSZI (Hungary) and I26DE (S Germany)
- The fastest arrivals at IS26 and PSZI appear to have significant back azimuthal scatter
- At I26DE (and PSZI) curious trace velocity trends are observed, from high to low

Comparison IPLOR and I26DE

- Signals with tropospheric celerities were observed at IPLOR (Romania) and I26DE (S Germany)
- Back azimuthal scatter and trace velocity trends not observed at IPLOR

Azimuthal scatter at I26DE and nearby topography

- Scattered azimuths come from a direction with elevated, but not steep terrain
- Tropospheric propagation must have occurred along the source-receiver path
- Unclear how this would influence trace velocity observations

Simulating stratospheric propagation efficiency (40-60 km)

ECMWF-OPER forecast 20200804-17 UT - propagation conditions between 41 - 60 km

- The atmosphere is to leading order a vertically layered medium, with (some) lateral variability
- In-plane propagation sensitive to variations in the effective sound speed ($c_{eff} = c_T + w_a$)
- Ground-to-ground ducting can be approximated by c_e -ratio $c_r(z) = \frac{c_e(z)}{c_e(z=z_{ord})}$

From source to receiver: a vertical transect through the atmosphere

- ۰ Stable stratospheric duct around 50 km altitude
- Jetstream appears • at mid-latitudes but plays no role in ducting

ECMWF-OPER fcst 20200804-17 UT - qcp (35.6E.34.0N) > (13.7E.48.8N)

Infrasound propagation modeling using Parabolic Equation method

PE (effective sound speed) Beirut to I26DE at 0.5 Hz -90 90 -95 80 -100 70 -105 ƙш Altitude [km] 40 40 -110 e e -115 e 님 -120 30 20 -125 10 -130 500 1000 1500 2000 2500 3000 Range [km]

• Colorscale corresponds to energy loss along propagation path

• Stratospheric waveguide is main duct; some interaction with a weak near-surface duct

Simulating lower tropospheric propagation efficiency (0-4 km)

ECMWF-OPER forecast 20200804-17 UT - propagation conditions between 0 - 6 km

- The atmosphere is to leading order a vertically layered medium, with (some) lateral variability
- In-plane propagation sensitive to variations in the effective sound speed ($c_{eff} = c_T + w_a$)
- Ground-to-ground ducting can be approximated by c_e -ratio $c_r(z) = \frac{c_e(z)}{c_e(z=z_{rnd})}$

From source to receiver: a vertical transect through the atmosphere

- Tropospheric generally inefficient over longer ranges
- A partial duct appears beyond 2000 km range
- Forecast skill of ECMWF model is challenged in mountainous terrain

Comparison between ECMWF and the non-hydrostatic AROME model

- AROME model:
 - 2.5 km scale resolution
 - Tropospheric model only
 - Boundary conditions provided by ECMWF
 - Allows to resolve non-hydrostatic motion

AROME model data courtesy of Christoph Wittman and Ulrike Mitterbauer (ZAMG)

ECMWF-OPER forecast 20200804-17 UT - propagation conditions between 0 - 6 km

AROME-OPER forecast 20200804-17 UT - propagation conditions between 0 - 6 km

 $14 \, / \, 16$

Comparison between ECMWF and the non-hydrostatic AROME model

AROME model data courtesy of Christoph Wittman and Ulrike Mitterbauer (ZAMG)

Conclusions

- The 4 August 2020 Beirut explosion gave rise to both seismic and acoustic arrivals that were detected as far as 6200 km distance.
- Observations at stations in Europe reveal a dispersed wavetrain with anomalous characteristics: (1) tropospheric celerities, (2) scattered back-azimuths and (3) inverse trace velocity trend
- It is hypothesized that the tropospheric phases interacted significantly with topography. This requires the application of full-wave modeling techniques including terrain.

