

InfraPy, InfraGA/GeoAc, & stochprop: open-source software tools for infrasound signal analysis and propagation modeling at Los Alamos National Laboratory

Philip Blom & Jeremy Webster

T1.1-215

LA-UR-21-24432

PUTTING AN END TO NUCLEAR EXPLOSIONS

InfraPy, InfraGA/GeoAc, & stochprop: open-source software tools for infrasound signal analysis and propagation modeling Philip Blom (pblom@lanl.gov) & Jeremy Webster

Los Alamos National Laboratory, Earth and Environmental Science Division

Infrasound research conducted at Los Alamos National Laboratory (LANL) in recent years has included development of tools for signal analysis, propagation modeling, and uncertainty quantification. Many of these tools have been licensed as open-source software, made available for download at the LANL Seismoacoustics Github page, and are utilized by scientists across the globe for a variety of national security, civil, and scientific applications. The InfraPy signal analysis suite includes state-of-the-art detection, association, localization, and yield estimation algorithms accessible through Python-based scripting and notebooks, a command line interface, as well as the InfraView graphical user interface. The InfraGA/GeoAc software is a propagation modeling tool capable of simulating the propagation of infrasonic signals through the atmosphere in the limit of geometric acoustics and includes a number of unique features such as eigenray identification, weakly non-linear waveform calculation, and propagation over realistic terrain. The stochprop library is an in-development tool that includes methods enabling quantification and reduction of propagation uncertainties for infrasound analysis. The capabilities of these tools and their application to a recent seismoacoustic event of interest are presented here.

open-source software tools for infrasound signal analysis and propagation modeling

Philip Blom (pblom@lanl.gov) & Jeremy Webster Los Alamos National Laboratory, Earth and Environmental Science Division

- Researchers on the LANL SeismoAcoustics (SA) Team have made an effort to share new algorithms and methods following peer reviewed publication through open-source software licensing
 - Several infrasound-specific software tools are summarized here (bold below); though, they are only a subset of the tools developed by the SA Team

LANL Seismoacoustics

Open-source and licensed seismoacoustic software from Los Alamos National Laboratory

The LANL Seismoacoustics team is a diverse group of scientists addressing local and regional-scale seismological and infrasound problems through a combination of theory, data analysis and field deployments in support of United States treat/explosion monitoring. The Seismoacoustics team has developed several open-source and licensed software projects.

https://github.com/LANL-Seismoacoustics

- bulletproof
- EZpick
- InfraGA/GeoAc
- InfraMonitor

- InfraPy
- particleman
- pisces
- PyGeoTess

- RSTT
- SASM
- stochprop

. . .

open-source software tools for infrasound signal analysis and propagation modeling

Philip Blom (pblom@lanl.gov) & Jeremy Webster Los Alamos National Laboratory, Earth and Environmental Science Division

Infrasonic signal analysis methods developed at LANL have been collected into a Python library called "InfraPy"

Features

- Beamforming and Detection
- Event Identification
- Localization
- Yield Estimation

Interface options

- InfraView GUI
- Command Line Interface (CLI)
- Python Notebook

open-source software tools for infrasound signal analysis and propagation modeling

Philip Blom (pblom@lanl.gov) & Jeremy Webster Los Alamos National Laboratory, Earth and Environmental Science Division

Beamforming and Detection

- Includes standard (Bartlett) beamforming as well as Capon and MUSIC
- · Detection uses adaptive Fisher-statistics

Event Identification

 Pair-based, joint-likelihood analysis and clustering analysis of the resulting distance matrix to identify events

Localization estimate for a surface explosion at the Utah Test and Training Range using regional infrasound (red star denotes ground truth, magenta point is max likelihood, and ellipses show 95 and 99% bounds)

Yield estimation for a surface explosion via computation of the near-source spectral characteristics (left) and comparison with a blastwave model (right)

Beamforming results for persistent sources demonstrates the improved resolution of Capon and MUSIC algorithms for identifying multiple, co-incident signals

Localization

 Location and origin time estimated using a Bayesian framework

Yield Estimation

- Statistical propagation models to estimate nearsource characteristics
- Comparison with a source model to estimate yield

open-source software tools for infrasound signal analysis and propagation modeling Philip Blom (pblom@lanl.gov) & Jeremy Webster

Los Alamos National Laboratory, Earth and Environmental Science Division

InfraGA/GeoAc is a suite of numerical tools for modeling **Infra**sound propagation in the limit of **Geo**metric **Ac**oustics

- Used and referenced in 25+ publications since 2014
- Models propagation in Cartesian coordinates or through a spherical atmospheric layer

Calculates arrival characteristics:

- Propagation time
- Arrival geometry (back azimuth, inclination)
- Turning height
- Geometric spreading, thermo-viscous losses

open-source software tools for infrasound signal analysis and propagation modeling

Philip Blom (pblom@lanl.gov) & Jeremy Webster Los Alamos National Laboratory, Earth and Environmental Science Division

 Able to simulate propagation over realistic terrain

- Uses auxiliary parameters to compute geometric spreading as well as identify propagation paths connecting specific source/receiver geometry (eigenrays)
- Weakly non-linear waveform calculations along ray paths provide a means to estimate arrival signals
- OpenMPI features allow for parallelized calculations

InfraPy, InfraGA/GeoAc, & stochprop: open-source software tools for infrasound signal analysis and propagation modeling Philip Blom (pblom@lanl.gov) & Jeremy Webster Los Alamos National Laboratory, Earth and Environmental Science Division

- The atmosphere is dynamic and relatively sparsely sampled, particularly the middle- and upper atmosphere
 - → Variability/uncertainty in the propagation medium leads to variability/uncertainty in infrasound propagation predictions
- Python library, stochprop, uses empirical orthogonal function (EOF) analysis to quantify this uncertainty and variability and construct **stoch**astic **prop**agation models

 Identifies seasonal trends and generates "typical" atmospheric and propagation characteristics

InfraPy, InfraGA/GeoAc, & stochprop: open-source software tools for infrasound signal analysis and propagation modeling Philip Blom (pblom@lanl.gov) & Jeremy Webster Los Alamos National Laboratory, Earth and Environmental Science Division

- Region- and season-specific models can be used with localization and yield estimation methods in InfraPy
- Detection probabilities can be computed by combining the propagation statistics with source and background noise models

 Propagation statistics for several locations across the continental US have been constructed for evaluation of the method

- Lebanon infrasoni
 This eve demonst
 InfraGA well as towards
 InfraPy to the v (Israel)
- A large chemical explosion occurred in Beirut, Lebanon in early August, 2020 and produced infrasonic signals observed 6,000+ km away
 - This event provides a useful example to demonstrate InfraGA/GeoAc and InfraPy
 - InfraGA/GeoAc analysis of regional propagation as well as more detailed simulations for propagation towards I26 (Germany) and I48 (Tunisia)
 - InfraPy detection of signals on several IMS stations to the west as well as a nearby non-IMS station, IMA (Israel), to the south
 - Detections used for localization of the event
 - Propagation simulations show a stratospheric waveguide to the west typical of summer in the northern hemisphere

- Ray tracing analysis has been used to study propagation towards the nearest IMS infrasound stations (I26 in Germany and I48 in Tunisia)
 - Weak stratospheric waveguide towards I26
 - Much stronger waveguide towards I48
 - Propagation towards I48 is primarily over water, while that towards I26 is over land → need to include terrain (in progress)

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO PrepCom

SnT 202 CTBT: SCIENCE AND TECHNOLOGY CONFERENCE Poster No.: T1.1-215

InfraPy, InfraGA/GeoAc, & stochprop:

open-source software tools for infrasound signal analysis and propagation modeling

Philip Blom (pblom@lanl.gov) & Jeremy Webster Los Alamos National Laboratory, Earth and Environmental Science Division

- InfraPy analysis at I26
 - Expect infrasonic arrivals approximately 2.5 hours later (~1 hour per 1000 km)
 - Arrival band approximately 0.1 to 1.0 Hz
 - Array processing identifies an extended arrival (almost 800 seconds) containing multiple arrival phases
- InfraPy localization
 - Estimated location is slightly north of Beirut
 - Origin time estimate is ~5 minute early

CTBT: SCIENCE AND TECHNOLOGY CONFERENCE Poster No.: T1.1-215

InfraPy, InfraGA/GeoAc, & stochprop:

open-source software tools for infrasound signal analysis and propagation modeling

Philip Blom (pblom@lanl.gov) & Jeremy Webster Los Alamos National Laboratory, Earth and Environmental Science Division

- InfraPy analysis at I26
 - Expect infrasonic arrivals approximately 2.5 hours later (~1 hour per 1000 km)
 - Arrival band approximately
 0.1 to 1.0 Hz
 - Array processing identifies an extended arrival (almost 800 seconds) containing multiple arrival phases
- InfraPy localization
 - Estimated location is slightly north of Beirut
 - Origin time estimate is ~5 minute early

- InfraPy analysis at I26
 - Expect infrasonic arrivals approximately 2.5 hours later (~1 hour per 1000 km)
 - Arrival band approximately
 0.1 to 1.0 Hz
 - Array processing identifies an extended arrival (almost 800 seconds) containing multiple arrival phases
- InfraPy localization
 - Estimated location is slightly north of Beirut
 - Origin time estimate is ~5 minute early

- LANL Seismoacoustic researchers are sharing their research with the wider geophysics community via **open-source software**
 - InfraPy is a signal analysis pipeline software package that includes detection, event identification, localization, and yield estimation capabilities that can be accessed via the InfraView GUI or a command line interface
 - InfraGA/GeoAc is a suite of numerical tools for modeling infrasound propagation in the limit of geometric acoustics including propagation through a spherical layer and interaction with terrain
 - **stochprop** is a collection of methods that allow researchers to quantify the variability and uncertainty in the atmospheric state relevant to infrasound propagation uncertainty quantification
- The large explosion that occurred in Beirut during August, 2020 provides a useful example to demonstrate InfraGA/GeoAc and InfraPy analysis

CTBT: SCIENCE AND TECHNOLOGY CONFERENCE Poster No.: T1.1-215

InfraPy, InfraGA/GeoAc, & stochprop:

open-source software tools for infrasound signal analysis and propagation modeling

Philip Blom (pblom@lanl.gov) & Jeremy Webster Los Alamos National Laboratory, Earth and Environmental Science Division

InfraPy

- Arrowsmith, S. J., et al. (2008). Regional monitoring of infrasound events using multiple arrays: application to Utah and Washington State. *Geophys. J. Int.*, **175**(1), 291 300. doi: <u>10.1111/j.1365-246X.2008.03912.x</u>
- Arrowsmith, S. J., et al. (2009). The F-detector revisited: An improved strategy for signal detection at seismic and infrasound arrays. *Bull. Seismol. Soc. Am.*, **99**(1), 449 – 453. doi: <u>10.1785/0120080180</u>
- Blom, P., et al. (2015). Improved Bayesian infrasonic source localization for regional infrasound. *Geophys. J. Int.*, **203**(3), 1682 – 1693. DOI: <u>10.1093/gii/ggv387</u>
- Blom, P., et al. (2018). Bayesian characterization of explosive sources using infrasonic signals. *Geophys. J. Int.*, **215**(1), 240 251. DOI: <u>10.1093/gji/ggy258</u>
- Blom, P., et al. (2020). Evaluation of a pair-based, joint-likelihood association approach for regional infrasound event identification. *Geophys. J. Int.*, **221**(3), 1750 1764. doi: <u>10.1093/gii/ggaa105</u>

InfraGA/GeoAc

- Blom, P. & Waxler, R. (2012). Impulse propagation in the nocturnal boundary layer: Analysis of the geometric component. *J. Acoust. Soc. Am.*, **131**(5), 3680 3690. doi: <u>10.1121/1.3699174</u>
- Blom, P. & Waxler, R. (2017). Modeling and observations of an elevated, moving infrasonic source: Eigenray methods. *J. Acoust. Soc. Am.*, **141**(4), 2681 – 2692. doi: <u>10.1121/1.4980096</u>
- Blom, P. (2019). Modeling infrasonic propagation through a spherical atmospheric layer – Analysis of the stratospheric pair. *J. Acoust. Soc. Am.*, **145**(4) 2198 – 2208. doi: <u>10.1121/1.5096855</u>
- Blom, P. (2020). The influence of non-flat ground on infrasonic propagation in the troposphere. *J. Acoust. Soc. Am.*, **148**(4), 1984 – 1997. doi: <u>10.1121/1.5096855</u>
- Blom, P. & Waxler, R. (2021). Characteristics of thermospheric infrasound predicted using ray tracing and weakly non-linear waveform analysis. *J. Acoust. Soc. Am.*, **149**(5), 3174 – 3188. doi: <u>10.1121/10.0004949</u>

stochprop

• Blom, P., et al. (2021). On the generation of statistical models for infrasound propagation from statistical models for the atmosphere: identifying seasonal and regional trends. *Geophys. J. Int.*, In Preparation.