\ EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE "‘Rsn R

L \, JUNE T10 2 JULY Exploring the Earth

T1.1 e-poster session
P1.1-464

Detection and properties of local artillery
Infrasound

Quentin Brissaud?!, Tormod Kvaerna!, Kamran Iranpour?!, Tina Kaschwich?
|dar Dyrdal?

1 Norwegian Seismic Array (NORSAR), Kjeller, Norway
2 Norwegian Defence Research Establishment (FFI), Kjeller, Norway



Background

Explosions excite infrasound , i.e., low-frequency sound (<20 Hz)
that can be recorded at large distances from the source

Identifying explosive source characteristics from infrasound
recordings would provide valuable data for defense and civilian
purposes

However, the detectability of infrasound (i.e, acoustic amplitudes
and spectral characteristics) is highly dependent on atmospheric
models. Correlations between source type, source-receiver
distance, and wind anisotropy are not well constrained

Is there any invariance in waveform characteristics with
specific explosive sources and weather properties?
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Fig: Recorded infrasound from identical ground
chemical explosions occurring tens of seconds
apart. From Bowman, et al, AGU 2020
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Infrasound propagation

Infrasound can be excited by a variety of natural
(e.g., volcano, earthquakes) and man-made
sources (e.g, explosions, aircrafts)

Because of its low frequency content,
infrasound can propagate over large distances
without being attenuated and then be recorded
at the ground

Infrasound ray paths in the atmosphere are
dependent primarily on wind variations with
altitude (see Fig 1)

Three types of infrasound phases (as well as
infrasound converted to seismic phases) can be
excited by artillery shots (see Fig 2): muzzle,
projectile, and impact

Can we use these phases to better constrain
the source?
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Fig 1: Right, infrasound ray paths from the source (red star). Acoustic
refractions occur for positive effective velocity gradients. Left, sound
velocity (co) and effective sound velocity (cotwsx) profiles, with wx = wind.
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Fig 2: Sketch of artillery shot. The muzzle blast, ballistic shockwave
and impact signal (M, B, and I, respectively) are displayed at different
times. The projectile trajectory is the black line. From Dagallier, 2019



Ray path sensitivity to wind conditions
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Dataset

The Norwegian armed forces provided ground-truth data about a
large number of live fire exercises in Southern Norway in 2019-
2020 (see video)

Multiple artillery ammunition types (3 explosive and 1 non-
explosive), muzzle velocities, and target ranges were tested

NORSAR runs three permanent seismic arrays and one
infrasound array at close proximity of the area of the military
exercises

This unique dataset enables us to study dependences
between waveform characteristics and source or
environmental factors
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Infrasound stations
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Fig: Map showing artillery targets (red circles),
artillery locations (square with cross), seismic
stations (NC and NB arrays), and infrasound
stations (NRSI)



ldentifying artillery infrasound and seismic phases

We used a Capon FK analysis to detect acoustic and seismic phases from the artillery and impacts

With a known shot time, we can identify the source mechanism behind each detected phase by
comparing their velocity across all stations

Below, we highlight the variations in detected phases by showing recordings from shots on different days
and using different types of ammunition
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Fig 1: Seismic (NC3-4) and infra. (NR) timeseries after shot on Aug. 24 Fig 2: Seismic (NC3-4) and infra. (NR) timeseries after shot on Apr. 19
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When both converted seismic phases are observed
near the impact or the muzzle (< 5km), accurate
location can be extracted (see Figs)
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Investigating wind, source, and waveform correlations
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Fig: Detection of at least one artillery phase and non detection for each shot vs muzzle
velocity and effective velocity ratio in the 0-5km altitude range. Results shown for 4 different
ammunition types. Points are color-coded with the source-infrasound station distance.
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Investigating wind, source, and waveform correlations

Ammunition type

By plotting the waveform characteristics
of detected artillery and impact phases,
we can note a few additional points:

No obvious correlations between the phase
type and the signal dominant frequency

No obvious correlations between the
effective velocity ratio and the dominant
frequency

No obvious correlations between the
muzzle velocity and the dominant frequency
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Fig: Detected artillery and impact phases vs signal dominant frequency and
effective velocity ratio in the 0-5km altitude range. Results shown for 4 different
ammunition types. Points are color-coded with the muzzle velocity.



Investigating wind, source, and waveform correlations
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distance.



Conclusion

Future directions

Conclusion / future directions

Four different artillery phase types were observed from the military exercises studied: Seismic and
acoustic artillery phases, and seismic and acoustic impact phases.

Lower tropospheric winds (< 5 km, extracted from the ERAS reanalysis) primarily control the detectability
of impact and artillery phases within 70km from both sources

The phase types (from the artillery muzzle or the impact) show differences in spectral energy distribution
which can be used to discriminate between these two signal types.

The accuracy of estimated artillery and impact locations can be improved by including seismic phase
observations at stations in the vicinity of the source (e.g., within 15 km).

Only a few waveform, winds, and source parameters were compared to study correlations. An
investigation of additional parameters (e.g., horizontal wind variations, spectrogram features, signal
duration) should be carried out.

For future military exercises we propose to improve the spatial coverage of the signal observations by
deploying additional infrasound and seismic stations
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Abstract

Acoustic-wave detection from man-made sources like explosions and artillery is of interest both for civilian
and military purposes. Infrasound propagation from surface sources is controlled by a complex interplay
between source location, winds, atmospheric attenuation, and topography. The seasonal and stochastic vari-
ability of stratospheric and tropospheric winds 1s known to play an important role in the detectability of
infrasound on the ground. In particular, large wind-intensity variations occur between summer and winter
months. However, the lack of high-quality observational datasets with good temporal coverage through-
out the year limits our understanding of the correlations between source characteristics, range-dependent
atmospheric properties, and topography. Here, we take advantage of an extensive set of artillery exercises,
conducted by the Norwegian Armed Forces in southern Norway throughout 2020, to constrain the detectabil-
ity and wave properties at local distances. Up to 70 km distance, signals are generally observed when the
atmospheric models include stronger lower-tropospheric winds (1-5km altitude) blowing in the direction of
propagation. When cross winds dominate the wind field, low-amplitude infrasound arrivals are still observed
in the acoustic shadow zone while not predicted by ray-tracing simulations, highlighting both model and

propagation uncertainties introduced by small-scale wind heterogeneities and diffraction effects.
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