Metrology for low frequency sound and vibration: An introduction to the Infa-AUV project

O4.1-213
The mission of the project:

We deliver the link between

the International System of Units (SI)

and the

the International Monitoring System (IMS)

for acoustic and seismic measurements
Metrology for low frequency sound and vibration: An introduction to the Infa-AUV project

WP1 Primary Calibration

Multi-component calibration device at PTB

WP2 Secondary Calibration

Infrasound calibration set-up at CEA

WP3 On-site Calibration

Infrasound station

WP4 Consequences

WP5 Impact

CEN ISO IEC

CTBTO ICA EGU

WEBSITE BEST PRACTICE GUIDE
WP1 Primary Calibration

- Calibration with primary realization of the Unit according to standardized methods
- Typically complex process in laboratory
- Well controlled environment
- Lowest measurement uncertainty
Metrology for low frequency sound and vibration: An introduction to the Infa-AUV project

WP1 Primary Calibration

- Calibration with primary realization of the Unit according to standardized methods
- Typically complex process in laboratory
- Well controlled environment
- Lowest measurement uncertainty

extend the frequency range with new methods

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO
Metrology for low frequency sound and vibration: An introduction to the Infa-AUV project

- Calibration by comparing one sensor to another
- Typically simple process in laboratory
- Controlled environment
- Measurement uncertainty inherits from primary calibration
- Needed for the multitude of sensor types
Metrology for low frequency sound and vibration: An introduction to the Infa-AUV project

- Calibration by comparing one sensor to another
- typically simple process in laboratory
- controlled environment
- measurement uncertainty inherits from primary calibration
- needed for the multitude of sensor types

extend the frequency range
find appropriate reference sensors
Metrology for low frequency sound and vibration: An introduction to the Infa-AUV project

WP3 On-Site Calibration

- Calibration by comparing the station to a „transfer-standard“ sensor
- Limited accessibility, maintenance
- Uncontrolled environment
- Uncontrolled (arbitrary) signal sources
Metrology for low frequency sound and vibration: An introduction to the Infa-AUV project

- Calibration by comparing the station to a “transfer-standard” sensor
- Limited accessibility, maintenance
- Uncontrolled environment
- Uncontrolled (arbitrary) signal sources

WP3 On-Site Calibration

Evaluate suitable signal sources for the calibration on site
Evaluate the impact of environmental conditions
Develop procedures for the comparison to get transfer functions

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO
• Measurement uncertainties propagation from primary calibration to the operations on site

• How to do it right, good practise

• What’s the impact on modelling (propagation of uncertainty)

• Support for legal metrology (noise assessment): Wind parks, Infra sound and the public
• Measurement uncertainties propagation from primary calibration to the operations on site

• How to do it right, good practise

• What’s the impact on modelling (propagation of uncertainty)

• Support for legal metrology (noise assessment): Wind parks, Infra sound and the public

evaluate uncertainty of measurement

Draft a best practise guide

Show case the impact on environmental modelling
Metrology for low frequency sound and vibration: An introduction to the Infa-AUV project

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO.
What will be gained from Infra-AUV:

- Mutual international acceptance of measurement results (CIPM-MRA) by traceability to the SI
- Improved direct, quantitative comparability of sensors and stations
- Traceable sensor replacement
- Reliable knowledge of measurement uncertainty
- Good practise for the use of uncertainty in modelling
Metrology for low frequency sound and vibration: An introduction to the Infa-AUV project

Th. Bruns, C. Koch Physikalisch-Technische Bundesanstalt, PTB, Germany
D. Rodriguez, Laboratoire national de métrologie et d'essais, LNE, France
S. Robinson, National Physical Laboratory, NPL, United Kingdom
L. Ceranna, Bundesanstalt für Geowissenschaften und Rohstoffe, BGR, Germany
J. Winther, Danish Primary Laboratory, DPLA/HBK, Denmark
F. Larssonier, Commissariat à l’énergie atomique et aux énergies alternatives, CEA, France
R. Barham Acoustic Sensor Networks, ASN, United Kingdom
Metrology for low frequency sound and vibration: An introduction to the Infa-AUV project

https://www.ptb.de/empir2020/infra-auv

Infra-AUV has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.