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Large aftershock sequences cause problems for the International Data Centre (IDC) because the seismic 
event rate increases dramatically during an aftershock sequence, making correct association of arrivals 
difficult for the automated pipeline. Aftershock sequences can continue for days or even months after a 
large earthquake and although aftershocks aren’t events of interest for treaty monitoring purposes, 
they must be reviewed and eliminated by analysts, resulting in delayed release of the IDC bulletins. We 
turn to machine learning to automatically identify aftershock events and improve automated pipeline 
performance. In our research, we train a paired neural network (PNN) to automatically perform 
aftershock identification based on waveform similarity, even when only a few datapoints are available 
for training. This allows the model to be applied to classes outside of the original training dataset. We 
analyze the ability of our PNN to classify aftershock data constructed from signals recorded by the IMS 
network and several open IRIS networks added to real noises from the STanford Earthquake Dataset 
(STEAD) or the University of Utah network. We apply the trained model and waveform cross-correlation 
on the constructed test dataset and compare the performance of the two approaches.
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• The ability to automatically identify nuisance aftershock events to reduce analyst workload when 
searching for events of interest is an important step in improving nuclear monitoring capabilities. 

• While waveform cross-correlation methods have proven successful, they have limitations (e.g., 
difficulties with spike artifacts, multiple aftershocks in the same window) that machine learning 
may be able to overcome. 

• Here we apply a Paired Neural Network (PNN) to a dataset consisting of real, high quality signals 
added to real seismic noises in order to work with controlled, labeled data and establish a baseline 
of the PNN’s capability to identify aftershocks.
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The Paired Neural Network (PNN) used in this study consists of 
two instances of the same underlying sub-architecture, where 
weights are shared between the two sub-architectures. 

• One waveform from a waveform pair is input into each sub-
architecture to obtain a corresponding vector.

• The Euclidean distance between the two output vectors corresponds 
to the estimated similarity of the waveform pair, with a far distance 
indicating a non-match and vice versa.

• Dropout layers are included to regularize the model and to estimate 
PNN score uncertainties. 

• Uncertainties are estimated by performing inferences on the current 
data multiple times with a random set of connections deactivated 
with each inference, allowing for a distribution from which the mean 
and standard deviation can be estimated. 

• Finally, a contrastive loss function is used.
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Signals and noises are added together (see 
above), resulting in 61,297 constructed signals 
from which we generate the training, validation, 
and test datasets.

10,686 of the generated waveforms are overlapping 
waveforms, i.e. one window contains two copies of the same 
signal at different amplitudes, as shown above.

• Overlapping waveforms are a proxy for when two 
aftershocks occur in close proximity in time and space.

• A random signal is selected and a copy of that signal is 
added to the original signal after a time delay is applied.

• The copied signal is multiplied by a random factor 
between 0.1-10 to modify amplitude relative to the 
original signal.

• An overlap length between 0 and 20 is applied. An overlap 
length of 0 corresponds to two signals arriving 
simultaneously. An overlap length of 20 corresponds to the 
second signal arriving 20 seconds after the first signal.  
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Signals consist of:
• High SNR first P-arrivals picked on the BHZ component 

recorded by the IMS (from 2007-2020; red stations) or 
open IRIS networks (from 2011; black stations). 

• Signals can be generated by events of any magnitude or 
epicentral distance.

• Signals are resampled to 40 Hz, demeaned, detrended, 
and high-pass filtered at a corner frequency of 0.3 Hz.

• Signal SNR compared to pre-P noise is required to be > 
20 dB.

• Signals are windowed to be 30 seconds in total 
duration, beginning 2 seconds before the P-arrival.

Noises come from two datasets:
• The University of Utah (UU) dataset (†Tibi et al., 2021) 

and the STanford EArthquake Dataset (†STEAD; Mousavi 
et al, 2019).

• Contain no contaminating signals.
• Noises are preprocessed in the same way as signals, 

except no high-pass filter applied. 
†Tibi, R., P. Hammond, R. Brogan, C. J. Young, & Koper, K. (2021), doi: 10.1785/0120200292.
†Mousavi, S. M., Sheng, Y., Zhu, W. & Beroza, G.C. (2019), doi: 10.1109/ACCESS.2019.2947848.
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• Waveform pairs consisting of two constructed waveforms randomly selected from the 
61,297 waveform dataset are input into the PNN.
• Both waveforms in a pair may have been constructed with either the same recorded signal (a match) or 

different recorded signals (not a match). 

• The training, validation, and test datasets consist of: 
• Training – 48000 waveform pairs (24000 matching and nonmatching)
• Validation – 800 waveform  pairs (400 matching and nonmatching)
• Test –800 waveform pairs (400 matching and nonmatching).

• No noises or signals are shared between the training, validation, and test datasets.
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• We compare PNN test dataset scores to waveform Cross-Correlation (CC) scores for the same dataset.
• To get CC scores, a zero-normalized cross-correlation is performed on the test dataset. 

323

232 236

140

Match Non-Match Match Non-Match
• 81% and 35% of matching 

pairs clearly classified by 
the PNN (left) and CC 
(right). 

• 58% and 59% of non-
matching waveform pairs 
clearly classified by the 
PNN and CC, respectively.
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PNN thresh = 
0.29, FPR = 0%, 

TPR = 90% Actual Positive Actual Negative

Predicted 
Positive 360 0

Predicted 
Negative 40 400

CC thresh = 
0.29, FPR = 3%, 

TPR = 90% Actual Positive Actual Negative

Predicted 
Positive 362 12

Predicted 
Negative 38 388

We also compare the Receiver-Operating Characteristic (ROC) curves of the PNN (pink-to-
green) and CC (blue-to-red), where the True Positive Rate (TPR; y-axis) and False Positive Rate 
(FPR; x-axis) are defined as: 

• 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = !"
!"#$% , 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = $"

!%#$"

Both the PNN and CC ROC curves have large Areas Under the Curve (AUCs), where AUC is a 
measure of model accuracy (AUC = 1.0: 100% correct, AUC = 0.0: 100% incorrect). The PNN 
AUC = 98.4% and the CC AUC = 98.1%. 

However, when we zoom 
into the corner of the curve, 
we see that the PNN 
achieves a higher TPR than 
CC at all values ranging from 
~87.5% to 95% TPR and ~0% 
to 10% FPR. 

At a 90% TPR, the PNN misclassifies 10% of 
the matching waveform pairs as non-
matching and 0% of non-matching pairs as 
matching (see top confusion matrix).
For CC at the same TPR, 9.5% of matching 
waveform pairs and 3% of non-matching 
waveform pairs are misclassified (see 
bottom confusion matrix).
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PNN score = 0.005 ± 0.008

PNN score = 0.266 ± 0.213

Examples of waveform pairs resulting in true positive, true 
negative, and false negative classifications are shown at a 
threshold of 0.29.

• The 0.29 threshold was selected using the previously shown 
ROC curve.

• This threshold is selected to optimize the FPR. 
• At 0.29, TPR = 90% and FPR = 0%.

At this threshold, the PNN does well classifying waveform pairs 
with and without overlap. 
It also does fairly well with overlapping waveforms, correctly 
classifying 65% and 100% of matching and non-matching 
waveform pairs with overlap. 
All false negatives are found to involve at least one overlapping 
waveform.

PNN score = 0.299 ± 0.191

PNN score = 0.891 ± 0.099

PNN score = 0.991 ± 0.018

PNN score = 0.995 ± 0.005

PNN score = 0.005 ± 0.008

PNN score = 0.266 ± 0.213

PNN score = 0.995 ± 0.005

PNN score = 0.991 ± 0.018

PNN score = 0.299 ± 0.191

PNN score = 0.891 ± 0.099

True Positive Examples

False Negative Examples

True Negative Examples
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Match Non-Match Non-MatchMatch

Standard deviations (STD) of PNN scores are shown for 
known matches (top-left) and known non-matches 
(top-right).
Standard deviation values are found to range from 
~0.0 to 0.25. 

• In both cases, PNN scores for known matches and 
known non-matches tend to have STDs < 0.1. 

• Thus, STD < 0.1 = low uncertainty and STD ≥ 0.1 = 
high uncertainty.

STD versus PNN score shown as a scatter plot (bottom-
right) and 2D histogram (bottom-left). 

• STDs < 0.1 appear to occur near PNN scores = 0.0 
(clearly matching) or 1.0 (clearly non-matching). 

• Thus, STDs do not provide new info over the 
original PNN score.  
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A PNN can classify waveform pairs (our proxy for aftershocks) with high accuracy.
The PNN outperforms CC when classifying matching waveform pairs.

• 81% of matching pairs are clearly classified by the PNN vs only 35% for CC.
• 19.5% of matching, overlapping waveform pairs (proxies for waveforms with multiple aftershocks) are clearly classified by the PNN vs 

only 2% for CC. 

The PNN and CC perform equally well classifying non-matching waveform pairs.
• 58% of non-matching pairs are clearly classified by the PNN vs 59% for CC.
• 23.7% of non-matching overlapping waveform pairs are clearly classified by the PNN vs 31.8% for CC.

The PNN outperforms CC in the ROC curve corner.
• The PNN has a higher TPR at all values beginning at 87.5%. 
• At a 90% TPR, we find that the PNN better avoids false positives, achieving a 0% FPR versus a 3% rate for CC.

Low PNN uncertainties (< 0.1) are tied to clear matching, non-matching PNN scores. Higher uncertainties (≥ 0.1) are tied to 
intermediate scores.

In future work, we will investigate several remaining questions, including:
• Can our PNN model be further improved by training on more overlapping waveform data?
• How would the PNN perform when one waveform in the pair does not contain a signal?
• How would a model trained on constructed waveform data perform on real aftershock data?
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