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Large aftershock sequences cause problems for the International Data Centre (IDC) because the seismic
event rate increases dramatically during an aftershock sequence, making correct association of arrivals
difficult for the automated pipeline. Aftershock sequences can continue for days or even months after a
large earthquake and although aftershocks aren’t events of interest for treaty monitoring purposes,
they must be reviewed and eliminated by analysts, resulting in delayed release of the IDC bulletins. We
turn to machine learning to automatically identify aftershock events and improve automated pipeline
performance. In our research, we train a paired neural network (PNN) to automatically perform
aftershock identification based on waveform similarity, even when only a few datapoints are available
for training. This allows the model to be applied to classes outside of the original training dataset. We
analyze the ability of our PNN to classify aftershock data constructed from signals recorded by the IMS
network and several open IRIS networks added to real noises from the STanford Earthquake Dataset
(STEAD) or the University of Utah network. We apply the trained model and waveform cross-correlation
on the constructed test dataset and compare the performance of the two approaches.
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* The ability to automatically identify nuisance aftershock events to reduce analyst workload when
searching for events of interest is an important step in improving nuclear monitoring capabilities.

* While waveform cross-correlation methods have proven successful, they have limitations (e.g.,

difficulties with spike artifacts, multiple aftershocks in the same window) that machine learning
may be able to overcome.

* Here we apply a Paired Neural Network (PNN) to a dataset consisting of real, high quality signals

added to real seismic noises in order to work with controlled, labeled data and establish a baseline
of the PNN’s capability to identify aftershocks.
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The Paired Neural Network (PNN) used in this study consists of
two instances of the same underlying sub-architecture, where
weights are shared between the two sub-architectures.

*  One waveform from a waveform pair is input into each sub-
architecture to obtain a corresponding vector.

MaxPooling 1D
MaxPooling 1D

*  The Euclidean distance between the two output vectors corresponds
to the estimated similarity of the waveform pair, with a far distance

T . . Conv 1D
indicating a non-match and vice versa. (@ (1)
. D ; : : Spatial Dropout 1D
ropout layers are included to regularize the model and to estimate o
PNN score uncertainties. MaxPooling 1D
*  Uncertainties are estimated by performing inferences on the current L1 Distance '
data multiple times with a random set of connections deactivated
with each inference, allowing for a distribution from which the mean Dense Layer
and standard deviation can be estimated. Spatial Dpout 1D
. . . . ? ?
*  Finally, a contrastive loss function is used. Match? No Mateh?

Dense Layer
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Signals and noises are added together (see
above), resulting in 61,297 constructed signals
from which we generate the training, validation,
and test datasets.

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO PrepCom

POTIHNGANEND O NIV EAREXPIOSIONS

0.015 -
0.010
0.005
0.000 +
—0.005 +
—0.010
—0.015

[IMS.JCJ422.4062925319,0.6917761828706586,17.26119865928116.BHZ]

T T T
2015-06-02T21:05:50 21:06:00 21:06:10

10,686 of the generated waveforms are overlapping
waveforms, i.e. one window contains two copies of the same
signal at different amplitudes, as shown above.

*  Overlapping waveforms are a proxy for when two
aftershocks occur in close proximity in time and space.

* Arandom signal is selected and a copy of that signal is
added to the original signal after a time delay is applied.

*  The copied signal is multiplied by a random factor
between 0.1-10 to modify amplitude relative to the
original signal.

*  Anoverlap length between 0 and 20 is applied. An overlap
length of 0 corresponds to two signals arriving
simultaneously. An overlap length of 20 corresponds to the
second signal arriving 20 seconds after the first signal.

CIBTOORG
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Signals consist of:
*  High SNR first P-arrivals picked on the BHZ component
recorded by the IMS (from 2007-2020; red stations) or
open IRIS networks (from 2011; black stations).

*  Signals can be generated by events of any magnitude or
epicentral distance.

*  Signals are resampled to 40 Hz, demeaned, detrended,
and high-pass filtered at a corner frequency of 0.3 Hz.

*  Signal SNR compared to pre-P noise is required to be >
20 dB.

*  Signals are windowed to be 30 seconds in total
duration, beginning 2 seconds before the P-arrival.

Noises come from two datasets:

*  The University of Utah (UU) dataset (TTibi et al., 2021)
and the STanford EArthquake Dataset (tSTEAD; Mousavi

et al, 2019). { 4
. . . . A IRIS stations A
*  Contain no contaminating signals. A IMS stations

* Noises are preprocessed in the same way as signals, 180 120°W 60°W 0 60°E 120°E 180°
except no high-pass filter applied.

tTibi, R., P. Hammond, R. Brogan, C. J. Young, & Koper, K. (2021), doi: 10.1785/0120200292.
tMousavi, S. M., Sheng, Y., Zhu, W. & Beroza, G.C. (2019), doi: 10.1109/ACCESS.2019.2947848.
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* Waveform pairs consisting of two constructed waveforms randomly selected from the
61,297 waveform dataset are input into the PNN.

* Both waveforms in a pair may have been constructed with either the same recorded signal (a match) or
different recorded signals (not a match).

* The training, validation, and test datasets consist of:
* Training — 48000 waveform pairs (24000 matching and nonmatching)
* Validation — 800 waveform pairs (400 matching and nonmatching)
* Test —800 waveform pairs (400 matching and nonmatching).

* No noises or signals are shared between the training, validation, and test datasets.
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* We compare PNN test dataset scores to waveform Cross-Correlation (CC) scores for the same dataset.

* To get CC scores, a zero-normalized cross-correlation is performed on the test dataset.
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+ 81% and 35% of matching
pairs clearly classified by
the PNN (left) and CC

(right).

* 58% and 59% of non-
matching waveform pairs
clearly classified by the
PNN and CC, respectively.
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. . - . PNN thresh =
We also compare the Receiver-Operating Characteristic (ROC) curves of the PNN (pink-to- 0.29, FPR = 0%,
green) and CC (blue-to-red), where the True Positive Rate (TPR; y-axis) and False Positive Rate TPR = 90% Actual Positive | Actual Negative
(FPR; x-axis) are defined as:
. L. _ TP . _ _FP Positive
True Positive Rate = TPIFN’ False Positive Rate = TNTFP
Predicted
Both the PNN and CC ROC curves have large Areas Under the Curve (AUCs), where AUC is a Negative
measure of model accuracy (AUC = 1.0: 100% correct, AUC = 0.0: 100% incorrect). The PNN
AUC =98.4% and the CC AUC = 98.1%. CCthresh =
1 0.29, FPR = 3%,
1.01 %0 s TPR = 90% Actual Positive | Actual Negative
However, when we zoom Predicted
into the corner of the curve, 081 -0.8 - 0.8 Positive 362 12
we see that the PNN g 1 [ - Predicted
. . s 1.000 E = .
achieves a higher TPR than g 067 062 | [o62 Negative 38 388
= 9]
CC at all values ranging from 2 E £
a | 2 k= At a 90% TPR, the PNN misclassifies 10% of
~87.5% to 95% TPR and ~0% g e o S | [ . h hi ’ ¢ .
% EPR £ s - - the matching waveftorm pairs as non-
to 10% : 65, | matching and 0% of non-matching pairs as
0850 &5 &5 matching (see top confusion matrix).
o For CC at the same TPR, 9.5% of matching
0800 o002 0000 0425 0050 0075 0100 00 0.0 waveform pairs and 3% of non-matching
00 02 04 06 08 10 waveform pairs are misclassified (see
False positive rate . .
Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO PrepCom bOttom confUS|on matrlx)'
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True Negative Examples

2014-11-12T11:05:10 11:05:20

True Positive Examples

Examples of waveform pairs resulting in true positive, true
negative, and false negative classifications are shown at a

zgi: Zzi; IMS JKA. 14 9460412702,9. 168216667227169 A, 323091103256594 BHZ
i e threshold of 0.29.
= 0005 *  The 0.29 threshold was selected using the previously shown

-0.010
s PNN score = 0.995 % 0.005 0 NN score = 0.995 = 0.005 ROC curve.

1305147003710 03720 ©:37:30 13051470037:10 03720 03730 ® This threshold is selected to optimize the FPR.
—_— . At 0.29, TPR = 90% and FPR = 0%.
047 (KZKURI0.1.01530107709, BHZ 0.4 (ZKUR10.18 6261502476,5.786897517265163,4.0529401188986975 BHZ) X . .
0 0 At this threshold, the PNN does well classifying waveform pairs
" " with and without overlap.
=02

N PNN score = 0.991+0.018) ‘| _PNN score = 0.991+0.018) | It also does fairly well with overlapping waveforms, correctly
S = ES B e e classifying 65% and 100% of matching and non-matching

waveform pairs with overlap.
All false negatives are found to involve at least one overlapping

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO PrepCom Wavefo rm.
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Standard deviations (STD) of PNN scores are shown for
falnq known matches (top-left) and known non-matches
4 (top-right).
Standard deviation values are found to range from
- 088 ~0.0t0 0.25.
50 1 soi y) * |n both cases, PNN scores for known matches and
A ~ - ~ 4. " - ~ o known non-matches tend to have STDs < 0.1.
*  Thus, STD < 0.1 = low uncertainty and STD 2 0.1 =
. R . high uncertainty.
o o% 8
oz .,-;’.'f.: . ':'1*. = STD versus PNN score shown as a scatter plot (bottom-
'-_?:‘.’. X _, right) and 2D histogram (bottom-left).
: ,’J’*. . * STDs < 0.1 appear to occur near PNN scores = 0.0
b “'{ . . (clearly matching) or 1.0 (clearly non-matching).
°-°5'f. » *  Thus, STDs do not provide new info over the
oo ‘ . . ' . 5 original PNN score.
00 0 e % w0 e eaming e
Match Non-Match Match Non-Match
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A PNN can classify waveform pairs (our proxy for aftershocks) with high accuracy.

The PNN outperforms CC when classifying matching waveform pairs.
. 81% of matching pairs are clearly classified by the PNN vs only 35% for CC.
. 19.5% of matching, overlapping waveform pairs (proxies for waveforms with multiple aftershocks) are clearly classified by the PNN vs
only 2% for CC.
The PNN and CC perform equally well classifying non-matching waveform pairs.
. 58% of non-matching pairs are clearly classified by the PNN vs 59% for CC.
. 23.7% of non-matching overlapping waveform pairs are clearly classified by the PNN vs 31.8% for CC.
The PNN outperforms CC in the ROC curve corner.
. The PNN has a higher TPR at all values beginning at 87.5%.
. At a 90% TPR, we find that the PNN better avoids false positives, achieving a 0% FPR versus a 3% rate for CC.
Low PNN uncertainties (< 0.1) are tied to clear matching, non-matching PNN scores. Higher uncertainties (2 0.1) are tied to

intermediate scores.
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