The Optimised Local Renyi Entropy-Based Shrinkage Algorithm for Sparse TFD Reconstruction

V. Sucic*, V. Jurdana*, I. Volaric*, G. Bokelmann**, and R. Le Bras***

P3.6-428

* University of Rijeka, Croatia
** University of Vienna, Austria
*** CTBTO, Austria
E-mail: vsucic@riteh.hr
ABSTRACT

• Time-frequency distributions (TFDs) are useful tools for non-stationary signals analysis. However, due to the presence of unwanted cross-terms useful information extraction from TFDs has proven to be a challenging task, especially in the case of noise-corrupted real-life signals. One way to suppress the cross-terms is by employing compressive sensing methods that enforce sparsity in the resulting TFD.

• In this work, we have developed a sparse reconstruction algorithm that reconstructs a TFD from a small sub-set of signal samples in the ambiguity domain. The algorithm utilises the information from both the short-term and the narrow-band Rényi time-frequency entropies, while its parameters are optimised using evolutionary meta-heuristic methods.

• Results are presented for both synthetic and real-life signals in noise, and compared to the state-of-the-art sparse reconstruction algorithms.
Time-Frequency Signal Analysis

- The Wigner-Ville Distribution (WVD) is the most commonly used method for TFD calculation defined as

\[W_z(t, f) = \int_{-\infty}^{\infty} z(t + \frac{\tau}{2}) z^*(t - \frac{\tau}{2}) e^{-j2\pi ft} d\tau, \]

which introduces wanted components (auto-terms) and highly oscillatory unwanted components (cross-terms).

- The cross-terms can be suppressed in the WVD post-processing by applying a low-pass filter to the ambiguity function (AF):

\[A_z(\nu, \tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W_z(t, f) e^{j2\pi (f\tau - \nu t)} dt df, \]

which leaves the auto-terms positioned at the AF origin and filters out the cross-terms positioned through the rest of the domain:

\[A_z(\nu, \tau) = g(\nu, \tau) A_z(\nu, \tau), \]

where \(g(\nu, \tau) \) is the AF filter kernel.
The Compressive Sensing (CS) Methods

- The cross-term suppression can be achieved with the sparse reconstruction. Eq. (3) can be rewritten in the matrix form:

\[\vartheta_z(t, f) = \psi^H \cdot \mathbf{A}_z'(\nu, \tau), \]

where \(\vartheta_z(t, f) \) is the sparse TFD, or the solution matrix, \(\psi^H \) is the Hermitian transpose of the domain transformation matrix representing the 2D Fourier transform equivalent to (2), and \(\mathbf{A}_z'(\nu, \tau) \) is the CS-AF, or the observation matrix, which is a \(N_{\tau} \times N_{\nu}' \) rectangle containing the AF samples belonging to the auto-terms.

- The rest of the AF is calculated in a way which produces the sparsest TFD. This is an optimization problem with the \(\ell_0 \)-norm-based regularization function:

\[\vartheta_z^{\ell_0}(t, f) = \arg \min_{\vartheta_z(t, f)} \| \vartheta_z(t, f) \|_0, \]

subject to: \(\| \vartheta_z(t, f) - \psi^H \mathbf{A}_z'(\nu, \tau) \|_2^2 \leq \epsilon, \)

where \(\epsilon \) is a user-defined solution tolerance.
METHODS

The Local Rényi Entropies

Figure 1: (a) Short-term Rényi entropy; (b) narrow-band Rényi entropy; (c) both local entropies on one-component signal.

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO.
The Local Rényi Entropy Based Shrinkage Algorithm for Sparse TFD Reconstruction

• The proposed shrinkage algorithm is based on the Two-step iterative shrinkage/thresholding (TwIST) algorithm:

\[
\begin{align*}
\varphi_{z}^{0}(t, f)^{[n+1]} &= (1 - \alpha)\varphi_{z}^{0}(t, f)^{[n-1]} + (\alpha - \beta)\varphi_{z}^{0}(t, f)^{[n]} + \beta \cdot \text{shrink}\left\{ \varphi_{z}^{0}(t, f)^{[n]} + \psi^{H}\left(A^{\tau}(\nu, \tau) - \psi\varphi_{z}^{0}(t, f)^{[n]} \right) \right\},
\end{align*}
\]

where \(\alpha \) and \(\beta \) are user-defined TwIST relaxation parameters.

• \textit{shrink}\{\cdot\} operator is based on the \textbf{short-term} and the \textbf{narrow-band Rényi entropies} which give information on the number of signal components in each time- or frequency-slice, \(N_{c}(t) \) or \(N_{c}(f) \), respectively.
• CS-AF filtering concentrates mainly on the auto-terms; hence, the obtained sparse TFD has auto-terms with larger non-negative energy surface than cross-terms.
• The shrinkage algorithm leaves samples belonging to $N_c(t)$ or $N_c(f)$ largest surfaces in time- or frequency-slice.
• Parameters δ_t / δ_f control the number of samples left in the final time-/frequency-slice.
• The algorithm performance is controlled by the percentage of utilization of each Rényi entropy information, controlled by the parameter p:

$$\zeta_z(t, f) = p \cdot \zeta^t_z(t, f) + (1 - p) \cdot \zeta^f_z(t, f), \quad (7)$$

where $\zeta^t_z(t, f)$ and $\zeta^f_z(t, f)$ are TFDs obtained by the proposed shrinkage performed over time- or frequency-slices, respectively.
The Optimised Local Renyi Entropy-Based Shrinkage Algorithm for Sparse TFD Reconstruction

V. Sucic*, V. Jurdana*, I. Volaric*, G. Bokelmann**, and R. Le Bras***
* University of Rijeka, Croatia ** University of Vienna, Austria *** CTBTO, Austria

RESULTS

Considered Test Signals

\[z_s - \text{synthetic signal composed of linear and sinusoidal FM components embedded in additive white Gaussian noise with signal-to-noise ratio = 3 dB.} \]

\[z_r - \text{real-life gravitational signal (https://losc.ligo.org)} \]

\[\text{The reconstruction performance has been compared to the following state-of-the-art reconstruction algorithms: TwiST, Sparse reconstruction by separable approximation (SpaRSA) and Split augmented Lagrangian shrinkage algorithm (SALSA).} \]

Figure 2: WVD and its respective AF of: (a),(b) \(z_s \); (c),(d) \(z_r \). The automatically selected CS-AF area has been marked by a rectangle.
Parameters Optimization

- We have used the multi-objective optimization method based on the Particle swarm optimization (MOPSO) method; a stochastic optimization algorithm inspired by nature and social behaviour between birds in swarms.

Objectives which need to be minimized:

- mean squared errors between the local number of components (obtained by the short-term and the narrow-band Rényi entropy) in the starting and reconstructed TFDs, $\text{MSE}_{t,f}$ - preserve components resolution and consistency
- the number of regions with continuously-connected AF samples, N_r - preserves components connectivity

For the proposed algorithm, a multi-objective problem is formalized as:

$$\min \{ \text{MSE}_t, \text{MSE}_f, N_r(\alpha, \beta, p, \delta_t, \delta_f) \},$$

subject to $\alpha, p, \delta_t, \delta_f \in [0,1], \beta \in [0, 2\alpha]$.

(8)
The Optimised Local Renyi Entropy-Based Shrinkage Algorithm for Sparse TFD Reconstruction

V. Sucic*, V. Jurdana*, I. Volaric*, G. Bokelmann**, and R. Le Bras***
* University of Rijeka, Croatia ** University of Vienna, Austria *** CTBTO, Austria

RESULTS

Figure 3: Reconstructed sparse TFDs of: (a) z_s with the proposed algorithm; (b) z_s with the TwIST algorithm; (c) z_s with the SpaRSA algorithm; (d) z_s with the SALSA algorithm; (e) z_r with the proposed algorithm; (f) z_r with the TwIST algorithm; (g) z_r with the SpaRSA algorithm; (h) z_r with the SALSA algorithm.

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO
The Optimised Local Renyi Entropy-Based Shrinkage Algorithm for Sparse TFD Reconstruction

V. Sucic*, V. Jurdana*, I. Volaric*, G. Bokelmann**, and R. Le Bras***
* University of Rijeka, Croatia ** University of Vienna, Austria *** CTBTO, Austria

Table 1: Comparison with the state-of-the-art algorithms. The bold values indicate the best performing/fastest reconstruction algorithm.

<table>
<thead>
<tr>
<th>Rényi</th>
<th>TwIST</th>
<th>SpaRSA</th>
<th>SALSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = 0.816$</td>
<td>$p = 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\delta_t = 0.010$</td>
<td>$\delta_t = 0.913$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\delta_t = 0.948$</td>
<td>$\delta_t = 0.823$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{z}_S</td>
<td>\bar{z}_T</td>
<td>\bar{z}_S</td>
<td>\bar{z}_T</td>
</tr>
<tr>
<td>MSE$_t$</td>
<td>0.0170</td>
<td>0.0052</td>
<td>0.0132</td>
</tr>
<tr>
<td>MSE$_f$</td>
<td>0.0110</td>
<td>0.0048</td>
<td>0.0423</td>
</tr>
<tr>
<td>N_r</td>
<td>17</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>$t[s]$</td>
<td>0.165</td>
<td>0.381</td>
<td>0.191</td>
</tr>
</tbody>
</table>
CONCLUSIONS

- By utilizing both local Rényi entropies simultaneously, the proposed algorithm reduces inaccuracies of each entropy when analysing signals with components having different FM modulations.

- The proposed algorithm achieves competitive results when compared to the state-of-the-art sparse reconstruction algorithms, providing the best compromise between the objective functions and the algorithm execution time.