Quality Control source analysis using a rotating frame of reference

Matthew Cooper, James Ely, Warren Harper, Charlie Hubbard, Michael Mayer, Ryan Wilson
Pacific Northwest National Laboratory
P3.5-278

The views expressed here do not necessarily reflect the views of the United States Government or the Pacific Northwest National Laboratory.
Introduction

- Radiation system gain stability is critical to accurate activity and activity concentration measurements.
- The challenge is maintaining confidence in radiation system results
- Energy shift is one critical area to monitor
- An energy shift impacts many different areas of the nuclear measurement, including the isotope identification, detection efficiency, interference ratios for beta-gamma analysis
- Useful to monitor other areas like energy resolution and detection efficiency

Quality Control Rotational Method

- Rotational method maximizes the use of counting statistics
- Cs-137 data is acquired over 15 minutes
- By using a rotating frame of reference and projecting the coincidence data onto the rotated x-axis one gets peaks for each angle of rotation.

Quality Control Rotational Method: Fitting

- Source-Corrected (SC) is used to get the smoothed first derivative
- Raw data are the SG first derivative
- Blue is interpolated data
- High density interpolated data used to find the zero crossing of 16.55 degrees
- Peak centroid, area, and width are used to determine the best fit of the Compton scatter line.

Gamma Gain Correction Results

- Corrects for the gain shifts exceeding a parameter setting (this sample uses 1%) in channel 206
- 1% based on research presented at INGE 2019, suggesting shifts of <2% have negligible impact on final activity concentration results
- Corrects for slight downwards drift seen January-March
- Corrects the gain shift seen in June

Beta Gain Correction Results

- Corrects for the gain shifts exceeding a parameter setting (this sample uses 1%) in channel 206
- 1% based on research presented at INGE 2019, suggesting shifts of <2% have negligible impact on final activity concentration results
- Corrects for slight downwards drift seen January-March
- Corrects the gain shift seen in June

Conclusions

- A 137Cs is used on Xenon International to verify the beta-gamma nuclear detector stability.
- The Compton scatter beta intersect is tracked by using a rotational frame of reference.
- This rotational method projects the Compton scatter line onto the x-axis of the rotated frame to maximize the available counting statistics.
- Allows the determination of the Compton scatter line slopes, intercepts, and widths.
- The method corrects for observed gain shifts on a case-by-case basis.
Development of methods to track beta-gamma detector gains is important to the accuracy of radioxenon system measurements. Typical gain monitoring and correction is done using a mixed 137Cs/154Eu source, which results in several gamma-ray lines that can be fit by Gaussian distributions, and gain adjustments made to bring the peaks into the expected channel. The beta detector on the other hand does not produce clear peaks, so peaks are made by taking slices from the 2-D Compton scatter line and then analyzed. The method developed at PNNL takes a different approach; it uses the 2-D Compton scatter line and rotates the frame of reference until the projection of the Compton scatter line forms a peak. This method optimizes the use of counting statistics available from the Compton scatter and gives reliable results even with relatively short measurement times.
Quality Control source analysis using a rotating frame of reference
Matthew Cooper¹, James Ely¹, Warren Harper¹, Charlie Hubbard¹, Michael Mayer¹, Ryan Wilson¹
¹ Pacific Northwest National Laboratory

• Radioxenon system gain stability is critical to accurate activity and activity concentration measurements.
• The challenge is maintaining confidence in radioxenon system results
 • Energy drift is one critical area to monitor
 • An energy shift impacts many different areas of the nuclear measurement, including the isotopic identification, detection efficiency, interference ratios for beta-gamma analysis
 • Useful to monitor other areas like energy resolution and detection efficiency

Cs-137 spectral data showing the beta-singles and beta projection beta-gamma in the top plot, gamma-singles and gamma projected beta-gamma in the left side plot, and beta-gamma spectrum in the central figure.
Quality Control source analysis using a rotating frame of reference

Quality Control Rotational Method

- Rotational method maximizes the use of counting statistics
- Cs-137 data is acquired over 15 minutes
- By using a rotating frame of reference and projecting the coincidence data onto the x’-axis one gets peaks for each angle of rotation.

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO.
Method

- Savitsky-Golay (SG) is used to get the smoothed first derivative.
- Red points are the SG first derivative.
- Blue is interpolated data.
- High density interpolated data used to find the zero crossing of 19.55 degrees.
- Peak centroid, area, and width are used to determine the best fit of the Compton scatter line.
• Corrects for the gain shifts exceeding a parameter setting (this example uses 1%) to channel 230
 • 1% is based on research presented at INGE 2019, suggesting shifts of <2% have negligible impact to final activity concentration results
• Corrects for slight downwards drift seen January-March
• Corrects the gain shift seen in June

<table>
<thead>
<tr>
<th>Uncorrected Gamma Position</th>
<th>Gain Corrected Gamma Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>232.9</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>2.48 ± 0.16</td>
</tr>
</tbody>
</table>
Quality Control source analysis using a rotating frame of reference

Beta Gain Correction Results

• Corrects for the gain shifts exceeding a parameter setting (this example uses 1%) to channel 200
 • 1% is based on research presented at INGE 2019, suggesting shifts of <2% have negligible impact to final activity concentration results
• Corrects for slight downwards drift seen after April

<table>
<thead>
<tr>
<th></th>
<th>Uncorrected Beta Intercept</th>
<th>Gain Corrected Beta Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>203.0</td>
<td>200.3</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>1.46 ± 0.09</td>
<td>0.85 ± 0.05</td>
</tr>
</tbody>
</table>
Quality Control source analysis using a rotating frame of reference

- A 137Cs source is used on Xenon International to verify the beta-gamma nuclear detector stability.
- The Compton scatter beta intercept is tracked by using a rotational frame of reference.
- This rotational method projects the Compton scatter line onto the x-axis of the rotated frame to maximize the available counting statistics.
 - Allows the determination of the Compton scatter line slope, intercepts, and width.
- The method corrects for observed gain shifts on a case-by-case basis.