

Accounting for radioxenon interferences

Matthew Cooper¹, Brittany Abromeit¹, James Ely¹, Daniel Keller¹, Michael Mayer¹, Justin McIntyre¹, Johnathon Slack¹, Thomas Suckow¹, Ryan Wilson¹ ¹ Pacific Northwest National Laboratory

P3.5-280

BATTELLE

The views expressed here do not necessarily reflect the views of the United States Government or the Pacific Northwest National Laboratory.

PUTTING AN END TO NUCLEAR EXPLOSIONS

NCE AND TECHNOLOGY CONFERENC

Accounting for radioxenon interferences

Matthew Cooper¹, Brittany Abromeit¹, James Ely¹, Daniel Keller¹, Michael Mayer¹, Justin McIntyre¹, Johnathon Slack¹

Thomas Suckow¹, Ryan Wilson¹

¹ Pacific Northwest National Laboratory

ABSTRACT: Radioxenon analysis is a critical part of monitoring for underground nuclear explosions. Algorithms that determine the activity concentration of a sample were developed over many years and continue to be updated as lessons are learned from automated radioxenon analysis systems. During Xenon International testing in the U.S., a large activity ¹³³Xe spike caused false positive hits for ¹³³mXe, with similar false positive hits are expected when the metastable isotopes are present. The U.S. is developing algorithms that include interference terms for the four radioxenon isotopes and the radon daughters to reduce the biasing and false positives that are caused by large interference radioxenon spikes. The algorithms will use matrix inversion to solve the correlated interference terms simultaneously. The additional interference terms will provide radioxenon analysis that is more accurate under broader conditions and will reduce the number of false positive results.

Introduction

Poster No.:

- · Algorithm for metastable interference in other ROIs
- Specifically to account for false positives of ^{131m}Xe and ^{133m}Xe respectively

P3.5-280

- But, also accounts for other interferences
- Method uses interference ratios
- For all isotopes in all ROIs
- Set of linear equations; matrix is best method mathematically

Standardizing and Redefining

- ROI changes (beta spectrum in 30 keV)
- Remove overlapping ROIs
- Changed ROI4: now below ROI5
- Changed ROI7; now above ROI6
- Standardizing naming convention for calibration files
- Load up files from directory with single path selection (easier loading)

The views expressed here do not necessarily reflect the views of the United States Government or the Pacific Northwest National Laboratory Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO PrepCom

Expanded Interference Terms

- · All interference ratios in file header
 - Expand interference ratio section
- Software description block
 - · Identifies which analysis module to run
- Since modifying file anyway....
- Put b-g efficiencies in b-g Efficiency block (consistent with IMS)
- Additional significant figures on the interference ratio uncertainties
- Plan: add in hardware gain settings

Matrix Inversion

- Matrix inversion: converts from ROI to isotope
 - 5 x 7 matrix can't invert directly, but use a pseudo inversion (Moore-Penrose)
 - Using a numerical approach to uncertainty to better account for total uncertainty
 - Spot checked against GUM workbench and Wolfram Mathematica
- Exclusive on upper channel limit (avoids possible double counting)

b-g(1	ficiency XE-131m		5	0.676982 0.016388	
b-cff	ficiency XI-133m		6	0.627726 0.016153	
b-gEf	ficiency XE-133		7	0.272581 0.000854	
# Rat	105				
Ratio	P0214_352:242	1	2	0.437683 0.001251	
Ratio	P0214_352:80	1	3	0.358661 0.001085	
Ratio	P8214-1.352:30	1	4	0.016495 0.000204	
Eat10	P0214-2_352:30	1	5	0.015474 0.000215	
Ratio	P8214-3_352:30	1	6	0.017461 0.000210	
Ratio	P8214-4.352:38	1	7	0.037956 0.000313	
Ratio	XE135-0_250:80	2	1	0.005677 0.000113	
Ratio	XE135-1_250:80	2	3	0.010148 0.000149	
Ratio	XE135-2 250:30	2	4	0.003374 0.000085	
Rat1o	XE135-3_250:30	2	5	0.004351 0.000097	
Ratio	XE135-4_250:30	2	6	0.011483 0.000157	
Retio	XE135-5.258:38	2	7	0.021929 0.000219	
Rat1o	XE133_81:352	3	1	0.000035 0.000018	
Ratio	XE133_81:242	э.	2	0.000000 0.000032	
Rat1o	XE133-1.81:30	3	4	0.429782 0.000965	
Ratio	XE133-2_81:30	3	5	0.399789 0.000922	
Ratio	XE133-3_81:30	3	6	0.234857 0.000554	
Ratio	XE133-4 81:30	3	7	0.106006 0.000422	
Rat1o	XE131e-1_250:240	5	1	-0.000021 0.000016	
Ratio	XE131#-2_250:80	5	2	0.000000 0.000025	
Retio	XE131m-3_250:30	5	3	0.000000 0.000094	
Ratio	XE131m-4_81:30	5	4	0.022022 0.000193	
Ratio	XE131e-5_250:30	5	6	0.014242 0.000153	
fat1o	XE131m-6_250:30	5	7	-0.000241 0.000012	
Ratio	XE133m_250:240	6	1	0.000172 0.000104	
Rat1o	XE133a_250:80	6	2	0.000000 0.000201	
Ratio	XE133m-1_250:30	6	3	0.000000 0.010372	
Ratio	XE133e-2 01:30	6	4	-0.003624 0.005749	

Metastable Interference Results

- Software developed and analysis approach implemented
 - Consistent with previous measurements
- ^{131m}Xe interference removed from ^{133m}Xe region (ROI6) - 133mXe consistent with zero
- ^{133m}Xe interference removed in ^{131m}Xe region (ROI5) but required a calibration adjustment to reduce the ^{131m}Xe activity concentration to zero
 - Mismatch between data taken and when the detector was originally calibrated
 - Need to take new data to verify the results.

Conclusions

- Matrix inversion method has been demonstrated as capable of accounting for additional interference terms
- ROI limits, all interference ratios have been redefined
- Developed a calibration method to determine the additional interference terms

Future

- Need to recalibrate systems in order to use the new analysis
- Correct header information
- New ROI definitions need to be implemented

PUTTING AN END TO NUCLEAR EXPLOSIONS

R_{135:1} R_{133:1} R_{131m:1}

 $IR = \begin{bmatrix} R_{214:4} & R_{135:4} & R_{133:4} & R_{131m:4} & R_{133m:4} \end{bmatrix}$

 $R_{133:6}$

R135.7 R133.7 R131m.7

 $R_{133:2}$ $R_{131m:2}$

 $R_{131m:6}$

1

 $R_{135:5}$ $R_{133:5}$

R_{214:3} R_{135:3}

 $R_{214:2}$

 $R_{214:5}$ $R_{135:6}$

 $R_{214:6}$

 $R_{133m:1}$

 $R_{133m:2}$

 $R_{133m:5}$

R_{133m:7}

R_{131m:3} R_{133m:3}

0.680116 0.00268 0.652805 0.00114

b-gEfficiency XE-135 b-gEfficiency XE-133

Accounting for radioxenon interferences

Matthew Cooper¹, Brittany Abromeit¹, James Ely¹, Daniel Keller¹, Michael Mayer¹, Justin McIntyre¹, Johnathon Slack¹,

Thomas Suckow¹, Ryan Wilson¹

¹ Pacific Northwest National Laboratory

Radioxenon analysis is a critical part of monitoring for underground nuclear explosions. Algorithms that determine the activity concentration of a sample were developed over many years and continue to be updated as lessons are learned from automated radioxenon analysis systems. During Xenon International testing in the U.S., a large activity ¹³³Xe spike caused false positive hits for ^{133m}Xe and ^{131m}Xe, with similar false positive hits expected when the metastable isotopes are present. The U.S. is developing algorithms that include interference terms for the four radioxenon isotopes and the radon daughters to reduce the biasing and false positives that are caused by large interference radioxenon spikes. The algorithms will use matrix inversion to solve the correlated interference terms simultaneously. The additional interference terms will provide radioxenon analysis that is more accurate under broader conditions and will reduce the number of false positive results.

- Algorithm for metastable interference in other ROIs
 - Specifically, to account for false positives of ^{131m}Xe and ^{133m}Xe respectively
 - But, also accounts for other interferences
 IR

- For all isotopes in all ROIs
- Set of linear equations; matrix is best method mathematically

	[1	<i>R</i> _{135:1}	<i>R</i> _{133:1}	$R_{131m:1}$	$R_{133m:1}$	
	<i>R</i> _{214:2}	1	<i>R</i> _{133:2}	$R_{131m:2}$	<i>R</i> _{133<i>m</i>:2}	
	<i>R</i> _{214:3}	<i>R</i> _{135:3}	1	$R_{131m:3}$	<i>R</i> _{133<i>m</i>:3}	
=	<i>R</i> _{214:4}	$R_{135:4}$	<i>R</i> _{133:4}	$R_{131m:4}$	<i>R</i> _{133<i>m</i>:4}	
	<i>R</i> _{214:5}	$R_{135:5}$	$R_{133:5}$	1	$R_{133m:5}$	
	<i>R</i> _{214:6}	$R_{135:6}$	$R_{133:6}$	$R_{131m:6}$	1	
	R _{214:7}	$R_{135:7}$	$R_{133:7}$	$R_{131m:7}$	$R_{133m:7}$	

Accounting for radioxenon interferences Standardizing and Redefining

- ROI changes (beta spectrum in 30 keV)
- Remove overlapping ROIs
- Changed ROI4; now adjacent to ROI5
- Changed ROI7; now above ROI6
- Standardizing naming convention for calibration files
- Load up files from directory with single path selection (easier loading)

- All interference ratios in file header
 - Expand ratio section
- Software description block
 - Identifies which analysis module to run
- Since modifying file anyway....
 - Put b-g efficiencies in b-g_Efficiency block (consistent with IMS)
 - Additional significant figures on the interference ratio uncertainties
 - Plan: add in hardware gain settings

#			
<pre># b-g_Efficiency</pre>			
# XE 13E			0 680116 0 000680
b-getticiency XE-135		2	0.000110 0.002009
D-gEtticlency XE-133		3	0.652805 0.001149
D-gEtticlency XE-133		4	0.595457 0.001448
D-getticlency XE-131m		2	0.676982 0.016108
D-getticiency XE-135m		7	0.02/726 0.010155
D-getticiency XE-155		/	0.2/2561 0.000854
#			
# Ratios			
#			
Ratio PB214_352:242	1	2	0.437683 0.001251
Ratio PB214_352:80	1	3	0.350661 0.001086
Ratio PB214-1_352:30	1	4	0.016495 0.000204
Ratio PB214-2_352:30	1	5	0.018474 0.000216
Ratio PB214-3_352:30	1	6	0.017461 0.000210
Ratio PB214-4_352:30	1	7	0.037956 0.000313
Ratio XE135-0_250:80	2	1	0.005677 0.000113
Ratio XE135-1_250:80	2	3	0.010148 0.000149
Ratio XE135-2 250:30	2	4	0.003374 0.000086
Ratio XE135-3_250:30	2	5	0.004351 0.000097
Ratio XE135-4_250:30	2	6	0.011483 0.000157
Ratio XE135-5_250:30	2	7	0.021929 0.000219
Ratio XE133 81:352	3	1	0.000035 0.000018
Ratio XE133 81:242	3	2	0.000000 0.000032
Ratio XE133-1_81:30	3	4	0.429782 0.000966
Ratio XE133-2_81:30	3	5	0.399789 0.000922
Ratio XE133-3 81:30	3	6	0.234857 0.000664
Ratio XE133-4 81:30	3	7	0.106006 0.000422
Ratio XE131m-1 250:240	5	1	-0.000021 0.000016
Ratio XE131m-2_250:80	5	2	0.000000 0.000025
Ratio XE131m-3 250:30	5	3	0.000000 0.000094
Ratio XE131m-4 81:30	5	4	0.022022 0.000193
Ratio XE131m-5 250:30	5	6	0.014242 0.000153
Ratio XE131m-6 250:30	5	7	-0.000241 0.000012
Ratio XE133m 250:240	6	1	0.000172 0.000104
Ratio XE133m_250:80	6	2	0.000000 0.000201
Ratio XE133m-1 250:30	6	3	0.000000 0.010372
Ratio XE133m-2 81:30	6	4	-0.003624 0.005749
Ratio XE133m-3 250:30	6	5	0.032006 0.005493
Ratio XE133m-4 250:30	6	7	0.045116 0.002534

D

- Matrix inversion; converts from ROI to isotope
 - 5 x 7 matrix can't invert directly, but use a pseudo inversion (Moore-Penrose)
 - Using a numerical approach to uncertainty to better account for total uncertainty
 - Spot checked against GUM workbench and Wolfram Mathematica
- Exclusive on upper channel limit (avoids possible double counting)

	L I	$K_{135:1}$	$K_{133:1}$	$K_{131m:1}$	$K_{133m:1}$	
	<i>R</i> _{214:2}	1	<i>R</i> _{133:2}	$R_{131m:2}$	<i>R</i> _{133<i>m</i>:2}	
	<i>R</i> _{214:3}	<i>R</i> _{135:3}	1	$R_{131m:3}$	<i>R</i> _{133<i>m</i>:3}	
IR =	<i>R</i> _{214:4}	$R_{135:4}$	<i>R</i> _{133:4}	$R_{131m:4}$	<i>R</i> _{133<i>m</i>:4}	
	<i>R</i> _{214:5}	$R_{135:5}$	$R_{133:5}$	1	$R_{133m:5}$	
	<i>R</i> _{214:6}	$R_{135:6}$	<i>R</i> _{133:6}	$R_{131m:6}$	1	
	R _{214:7}	<i>R</i> _{135:7}	<i>R</i> _{133:7}	$R_{131m:7}$	<i>R</i> _{133<i>m</i>:7}	

D

Accounting for radioxenon interferences Metastable Interference Results

- Software developed and analysis approach implemented
 - Consistent with previous measurements
- ^{131m}Xe interference removed from ^{133m}Xe region (ROI6) – ^{133m}Xe consistent with zero
 - ^{133m}Xe interference removed in ^{131m}Xe region (ROI5) – but required a calibration adjustment to reduce the ^{131m}Xe activity concentration to zero
 - Mismatch between data taken and when the detector was originally calibrated
 - Need to take new data to verify the results.

Matrix inversion method has been demonstrated as capable of accounting for additional interference terms

- ROI limits, all interference ratios have been redefined
- Developed a calibration method to determine the additional interference terms

<u>Future</u>

- Need to recalibrate systems in order to use the new analysis
 - Correct header information
 - New ROI definitions need to be implemented