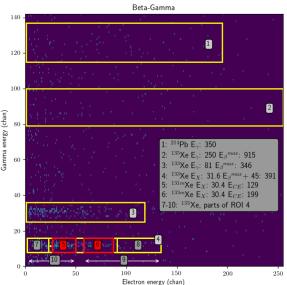


A. Ringbom Swedish Defence Research Agency (FOI) T3.5-377

PUTTING AN END TO NUCLEAR EXPLOSIONS

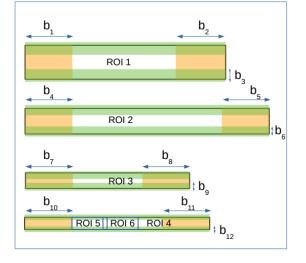


A. Ringbom, Swedish Defence Research Agency (FOI), anders.ringbom@foi.se

INTRODUCTION

- The measurement sensitivity (MDA) for a particular ROI in a radioxenon measurement depends on:
 - The background in the ROI.
 The detection efficiency of the ROI
 The measurement protocol
- The background comes from *ambient* (constant) background and *interfering isotopes*, and varies for each sample.
- Thus, an optimum ROI- setting exists for each sample. But currently, the same ROIs are used for all samples.

Goal: Develop a method to optimize the ROI -settings for individual samples in order to increase the measurement sensitivity.



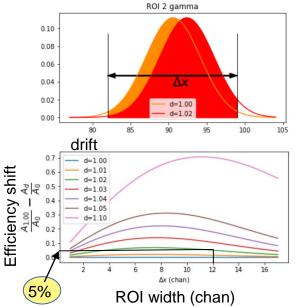
A. Ringbom, Swedish Defence Research Agency (FOI), anders.ringbom@foi.se

METHOD

- Create an *objective function* returning the MDA.
- The objective function depends on efficiency calibration, analyzed sample, isotope, original ROI-settings, and a set of parameters **b** that adjust the original ROI-settings.
- The parameters **b** are allowed to vary inside selected bounds.
- The objective function calculates a new efficiency calibration for every new ROI-setting.
- For each radioxenon isotope, minimize the objective function using *differential evolution**, a minimization technique for multidimensional real-valued functions, not requiring the function to be differentiable.

* R. Storn and K. Price, Journ. of Global Optimization 11:341-359, 1997

CTBTO.ORG



A. Ringbom, Swedish Defence Research Agency (FOI), anders.ringbom@foi.se

- Small energy drifts may cause systematic shifts in efficiency.
- The minimum allowed ROI width was determined assuming a max gamma drift of 2%, and a max beta drift of 5%, and accepting an efficiency shift of 5%.
- The metastable ROIs (5&6) was allowed to vary only in gamma direction.
- The lower bounds in gamma direction was set to 3 channels.
- Xe-133, 131m, 133m: ROI2 not included in minimization.
- Xe-135: ROI 3 & 4 not included in minimization.
- Samples analyzed using the BGM-method*

Determination of minimum gamma ROI with for ROI2, allowing a systematic efficiency shift of 5%.

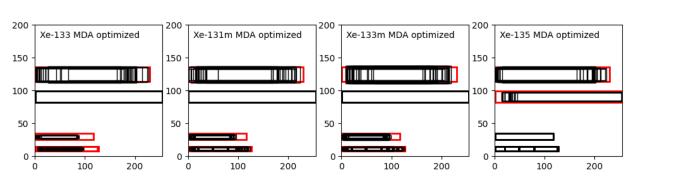
*A. Ringbom and A. Axelsson, "A new method for analysis of beta-gamma radioxenon spectra", Appl. Radiat. Isot., 2020, Feb; 156.

CTBTO.ORG

DETBKPHD Beta 81 keV gamma

A. Ringbom, Swedish Defence Research Agency (FOI), anders.ringbom@foi.se

RESULTS - ROIs


- Test set with 22 SAUNA-CUBE samples*
- Every sample and isotope optimized individually.
- Average runtime/sample (with 4 isotopes) using 10 Intel Xeon 2.60GHz cores was 10 min
- General ROI settings depends on isotope
- Xe-133: ROI 3 and 4 considerable smaller in gamma direction.

50

*See poster 3.1-375

Energy (chan)

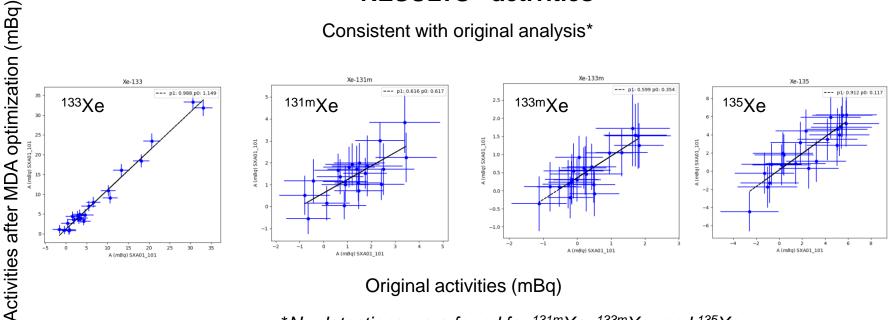
 The beta ROI widths decreased. Lower side moved up due to higher background at low channels.

Resulting ROIs for 22 test samples. Original ROIs in red.

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO

CTBTO.ORG

250



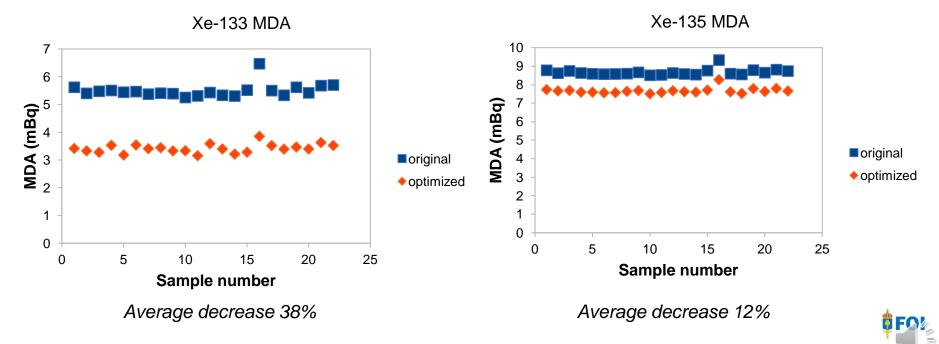
A. Ringbom, Swedish Defence Research Agency (FOI), anders.ringbom@foi.se

RESULTS - activities

Consistent with original analysis*

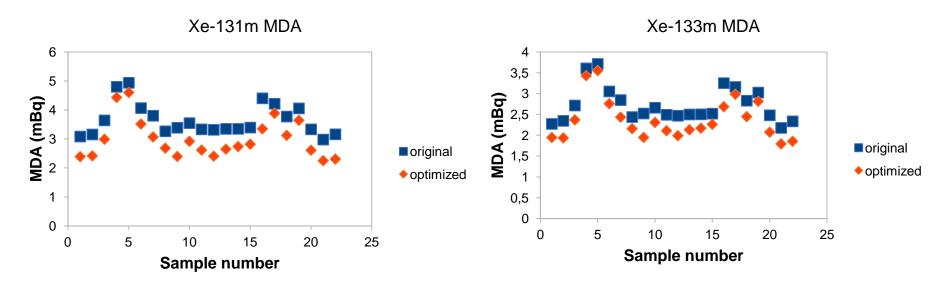
Original activities (mBg)

*No detections were found for ^{131m}Xe , ^{133m}Xe , and $^{135}Xe =>$ 1:1 correlation not expected.



A. Ringbom, Swedish Defence Research Agency (FOI), anders.ringbom@foi.se

RESULTS - MDA



A. Ringbom, Swedish Defence Research Agency (FOI), anders.ringbom@foi.se

RESULTS – MDA

Average decrease 13%

A. Ringbom, Swedish Defence Research Agency (FOI), anders.ringbom@foi.se

CONCLUSIONS

- By using an objective function that includes the beta-gamma efficiency calibration, it is possible to use differential evolution to optimize the ROI settings for individual samples.
- The method requires systems with automatic energy drift correction.
- For a test set from a SAUNA-CUBE system the Xe-133 MDA was reduced about 40%, and around 10% for the other isotopes.
- The method may also be used to improve the currently used system calibration.
- The size of the MDA improvement is expected to depend on detector background shape and size.
- The technique will be further studied using other system types and data sets with various isotopic composition.

