

Unattended Ground Sensing and In-Situ Processing of Geophysical Data

William O'Rourke, Tyler Morrow, Anirudh Patel, Matthew DeKoning, Brian Evans

O3.3-153

Sandia National Laboratories is a multimission Laboratory managed and operated by National Technology & Bengineering Solutions of Sandia, LLC a owned subsidiary of Honeywell international inc., for the U.S. Department of Energy whollys National Nuclear Security Administration under contract DE-NA0003525. SAND No. SAND2021-7365 C

This research was funded by the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (NNSA DNN R&D). The authors acknowledge important interdisciplinary collaboration with scientists and engineers from LANL, LINL, MSTS, PNNL, and SNL.

PUTTING AN END TO NUCLEAR EXPLOSIONS

- In some cases, it may not be feasible and/or desired to install a permanent geophysical monitoring station.
- Unattended Ground Sensors(UGS) can help fill the gap in these instances.
- UGS deployments present challenges that permanent monitoring sites do not have.
 - Typically, no access to internet or other means to send data
 - Typically, no access to electrical power
- Sandia has a long history of developing custom UGS systems for other applications.

- The goal of our work was to develop a real-time sensing system with data collection for on-board processing of seismic/acoustic data. At a minimum, the system must provide the follow capabilities:
 - Operate autonomously once deployed without the need for servicing
 - Operate continuously on battery and solar power only
 - Provide a communication path that allows for command and control along with data-exfil capability
 - Provide a processing capability to discriminate between events of interest and clutter/noise in the local area
 - Small Size Weight and Power (SWaP) constraints to allow for transport by foot to deployment locations
- This system will not serve as a final solution but rather a test system that allows for a concept to field capability.
 - Algorithms can be rapidly deployed onto the hardware and tested in the field

W.T. O'Rourke, T. Morrow, A. Patel, M. DeKoning, B.R. Evans

Pres. No.: 03.3-153

Sandia National Labs

- Sandia has developed a sensor platform that allows for rapid integration of sensors and software for rapid prototyping.
 - A fieldable hardware and software platform for rapidly deploying novel algorithms to detect, discriminate, and classify a wide range of targets in a testbed
 - Hardware is largely commercial with custom Sandia designs as needed
 - Variety of sensor types including acoustic, seismic and infrasound
 - Comms: Cellular, Iridium, Wi-Fi, other

Unattended Ground Sensing and In-Situ Processing of Geophysical Data

W.T. O'Rourke, T. Morrow, A. Patel, M. DeKoning, B.R. Evans

Pres. No.:

Sandia National Labs

- Integrated Sensor Platform (ISP)
 - Designed for rapid prototyping of algorithms from a variety of sensors
- Currently uses a Pico-Zed Processor
 - Early version of this system utilized the Raspberry Pi
 - FPGA with Arm 9 SOC
 - Coral TensorFlow Processing Unit (TPU)
 - Processor optimized to run TensorFlow machine learning models
 - Linux OS (Debian)
 - Allows for easy deployment of MatLab algorithms via Simulink, Python, etc.
 - 8 Synchronized Differential ADC channels allow multiple sensors
 - Tested up to 16ksps per channel
 - Iridium SBD communication enables remote alerts and data transfer
 - Verizon cellular modem
 - Power system and solar design
 - Indefinite operation in most environments

- Sandia has had an active experiment in southern Utah since 2017
- The experiment has focused on seismic monitoring of activities at the Redmond Salt Mine
 - Blast logs from 7 months received from mine engineer
 - 300+ blasts with time, mine level and drift ground truth data
 - Blasts are on the order of 1000 pounds TNT

Unattended Ground Sensing and In-Situ Processing of Geophysical Data

W.T. O'Rourke, T. Morrow, A. Patel, M. DeKoning, B.R. Evans

- Sandia National Labs
- Currently deployed ISP at Redmond Salt Mine
 - Running since July 15th, 2020
 - Communications:
 - Via Cellular we can update code and pull data
 - Via Iridium SatCom we can receive State-of-Health messages from the ISP via email
 - Processing:
 - Currently running STA/LTA detector and saving off data
 - STA/LTA detections will then be processed by a 2D-CNN Classifier (current work)
 - Trillium Compact Seismometer
 - Running a "shadow" system locally at Sandia for testing of code prior to deployment on fielded system

19 🧬	2.168.1	0.101 - PuTT	(- 0	×
%Cpu(KiB M	s): em :	0.6 us, 1029296	0.4 tota	sy, 0.0	ni, 98 092 fre		0 375	.2 wa, 32 use	0.0	0 zombi hi, 0.0 99672 bu: 905400 av	si, 0.0 ff/cache	st
PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND	
2093	root	rt	0	20852	1128	1008	s	39.3	0.1	0:02.21	picozed	v1+
	root									0:06.62	irg/54-0	ou+
2096	root			5388	2304	1888		0.7	0.2	0:00.07	top	
											kworker/	1:+
											systemd	
											kthreadd	
											rcu_par_	
											kworker/	
											mm_percp	
											ksoftire	
								0.0	0.0		rcu_pree	
								0.0			rcu_sche	d
										0:00.00		
											migratio	n/ 0
											cpuhp/0	
				0						0:00.00	cpuhp/1	
OOT	Wease	1Board:/	home/	root#								

- Algorithms can be developed in MatLab Simulink then C++ code can be auto-generated for execution on the ISP.
- The ISP is running Debian Linux OS so it also supports Python.

MatLab Simulink model and code used to generate C++ Code to run on sensor platform

- Goal: Develop a ML algorithm to run on the ISP as an exemplar for proof-of-concept
 Use ground truth catalog data to develop a classifier of events
 - Use ground truth catalog data to develop a classifier of events by mine location (level, drift, etc.)
 - Probability of detection (Pd) goal 70%
 - Develop algorithm on a workstation then move to the ISP
 - Using Python and Tensor Flow 2.0
 - Initially focus on implementation of inference model then eventually look into training on the ISP

→ (5) [0, 0, 0, 0.9, 0.1]

- 2-D Convolutional Neural Network
- Adam Optimizer
 - $\beta_1 = 0.9$
 - $\beta_2 = 0.999$
 - LR = 0.001
- Categorical Cross-Entropy Loss
- Minibatch size of 32
- 500 Epochs with Early Stopping

	Loss	Accuracy
Train	0.22	0.95
Validation	0.87	0.76

- Train Accuracy: 95.3%; Validation Accuracy: 75.9%
- High amount of overfitting motivates further regularization
 - As we are focused on inference, we have accepted the overfitting for now.
- As expected, signals with lower SNR are more difficult to classify

- We have developed a custom UGS capable of remote and autonomous operation.
- We have demonstrated a semi-complex ML model running on the system.
- As expected, we saw a reduction in performance when we quantized the model to run on the Coral TPU. The result was our validation accuracy dropped to 52%.

- Short-term
 - Event association across multiple spatially separated (5-10s of km) units
 - Explore ways to overcome the drop in performance due to quantization on the Coral TPU
 - Long-term
 - Identify one or more candidate algorithms with real-world use for implementation on the ISP
 - i.e., earthquake vs. explosion
 - Attempt to train the models on the ISP