Unattended Ground Sensing and In-Situ Processing of Geophysical Data

William O’Rourke, Tyler Morrow, Anirudh Patel, Matthew DeKoning, Brian Evans

O3.3-153
• In some cases, it may not be feasible and/or desired to install a permanent geophysical monitoring station.

• Unattended Ground Sensors (UGS) can help fill the gap in these instances.

• UGS deployments present challenges that permanent monitoring sites do not have.
 – Typically, no access to internet or other means to send data
 – Typically, no access to electrical power

• Sandia has a long history of developing custom UGS systems for other applications.
The goal of our work was to develop a real-time sensing system with data collection for on-board processing of seismic/acoustic data. At a minimum, the system must provide the following capabilities:

- Operate autonomously once deployed without the need for servicing
- Operate continuously on battery and solar power only
- Provide a communication path that allows for command and control along with data-exfil capability
- Provide a processing capability to discriminate between events of interest and clutter/noise in the local area
- Small Size Weight and Power (SWaP) constraints to allow for transport by foot to deployment locations

This system will not serve as a final solution but rather a test system that allows for a concept to field capability.

- Algorithms can be rapidly deployed onto the hardware and tested in the field
• Sandia has developed a sensor platform that allows for rapid integration of sensors and software for rapid prototyping.
 – A fieldable hardware and software platform for rapidly deploying novel algorithms to detect, discriminate, and classify a wide range of targets in a testbed
 – Hardware is largely commercial with custom Sandia designs as needed
 – Variety of sensor types including acoustic, seismic and infrasound
 – Comms: Cellular, Iridium, Wi-Fi, other
• Integrated Sensor Platform (ISP)
 – Designed for rapid prototyping of algorithms from a variety of sensors

• Currently uses a Pico-Zed Processor
 – Early version of this system utilized the Raspberry Pi
 – FPGA with Arm 9 SOC

• Coral TensorFlow Processing Unit (TPU)
 – Processor optimized to run TensorFlow machine learning models

• Linux OS (Debian)
 – Allows for easy deployment of MatLab algorithms via Simulink, Python, etc.
 – 8 Synchronized Differential ADC channels allow multiple sensors
 – Tested up to 16ksps per channel
 – Iridium SBD communication enables remote alerts and data transfer
 – Verizon cellular modem

• Power system and solar design
 – Indefinite operation in most environments
• Sandia has had an active experiment in southern Utah since 2017

• The experiment has focused on seismic monitoring of activities at the Redmond Salt Mine
 – Blast logs from 7 months received from mine engineer
 ▪ 300+ blasts with time, mine level and drift ground truth data
 ▪ Blasts are on the order of 1000 pounds TNT
DEPLOYMENT

Currently deployed ISP at Redmond Salt Mine

- Running since July 15th, 2020
- Communications:
 - Via Cellular we can update code and pull data
 - Via Iridium SatCom we can receive State-of-Health messages from the ISP via email
- Processing:
 - Currently running STA/LTA detector and saving off data
 - STA/LTA detections will then be processed by a 2D-CNN Classifier (current work)
- Trillium Compact Seismometer
- Running a “shadow” system locally at Sandia for testing of code prior to deployment on fielded system
• Algorithms can be developed in MatLab Simulink then C++ code can be auto-generated for execution on the ISP.

• The ISP is running Debian Linux OS so it also supports Python.
Goal: Develop a ML algorithm to run on the ISP as an exemplar for proof-of-concept

- Use ground truth catalog data to develop a classifier of events by mine location (level, drift, etc.)
- Probability of detection (Pd) goal 70%
- Develop algorithm on a workstation then move to the ISP
 - Using Python and Tensor Flow 2.0
- Initially focus on implementation of inference model then eventually look into training on the ISP
Unattended Ground Sensing and In-Situ Processing of Geophysical Data

W.T. O’Rourke, T. Morrow, A. Patel, M. DeKoning, B.R. Evans
Sandia National Labs

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO PrepCom.

2-D Convolutional Neural Network
- Adam Optimizer
 - $\beta_1 = 0.9$
 - $\beta_2 = 0.999$
 - $LR = 0.001$
- Categorical Cross-Entropy Loss
- Minibatch size of 32
- 500 Epochs with Early Stopping

<table>
<thead>
<tr>
<th></th>
<th>Loss</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>0.22</td>
<td>0.95</td>
</tr>
<tr>
<td>Validation</td>
<td>0.87</td>
<td>0.76</td>
</tr>
</tbody>
</table>
• Train Accuracy: 95.3%; Validation Accuracy: 75.9%

• High amount of overfitting motivates further regularization
 • As we are focused on inference, we have accepted the overfitting for now.

• As expected, signals with lower SNR are more difficult to classify
• We have developed a custom UGS capable of remote and autonomous operation.

• We have demonstrated a semi-complex ML model running on the system.

• As expected, we saw a reduction in performance when we quantized the model to run on the Coral TPU. The result was our validation accuracy dropped to 52%.
Unattended Ground Sensing and In-Situ Processing of Geophysical Data

W.T. O’Rourke, T. Morrow, A. Patel, M. DeKoning, B.R. Evans
Sandia National Labs

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO PrepCom.

• Short-term
 – Event association across multiple spatially separated (5-10s of km) units
 – Explore ways to overcome the drop in performance due to quantization on the Coral TPU

• Long-term
 – Identify one or more candidate algorithms with real-world use for implementation on the ISP
 ▪ i.e., earthquake vs. explosion
 – Attempt to train the models on the ISP