A high-resolution laboratory-based β-γ coincidence spectrometry system for radioxenon measurement

Matthew A. Goodwin1,2, Ashley V. Davies1, Richard Britton3, Steven J. Bell4, Sean M. Collins2,4, Patrick H. Regan2,4

1AWE, Aldermaston, UK
2Dept. of Physics, University of Surrey, Guildford, UK
3Preparatory Commission for the CTBTO
4National Physical Laboratory (NPL), Teddington, UK

matthew.goodwin@awe.co.uk

T3.2-482
• The UK CTBT Radionuclide Laboratory (GBL15) is certified for Particulate and Noble Gas measurements as part of the International Monitoring System (IMS)

• To deliver the Noble Gas measurements, a SAUNA II IMS Lab system is used for noble gas re-measurements to quantify ^{133}Xe, ^{135}Xe, ^{131m}Xe and ^{133m}Xe

• GBL15 has the remit to research new detection technologies to improve detection sensitivity and accuracy

• A PIPSBox detector has been configured for coincidence measurements with multiple high-purity germanium (HPGe) detectors to evaluate its performance as an option for a future operational laboratory system

• This work looks to determine the **optimal detection limits** achievable for this type of system

• This work is in collaboration with scientists from the University of Surrey and the National Physical Laboratory (NPL)
System Overview

- PIPSBox detector with 2x Mirion 6530 carbon-window BEGe detectors
- Acquisition data collected in time-stamped list-mode for each detector (2xPIPS, 2xHPGe) using custom acquisition software
- Data processed using C++/ROOT custom tools
- Advanced coincidence post-processing in Python/ROOT to generate spectral projections
- **Electron-photon coincidences are combined from all four gain-matched detectors to create a near-4π detector geometry and maximise the detection efficiency**

Fig. 1. AWE PIPSBox-HPGe research detector photographs, with detector cables and gas lines
Measurement & Analysis Overview

- Spike samples prepared by Seibersdorf Laboratories containing 133Xe, 131mXe, 133mXe and 135Xe and a separate sample with pure 131mXe
- Gas injected to the PIPSBox and quantified by HPGe measurements of the gas vial
- Perform acquisition and archive list-mode data
- Determine 4π detection efficiencies
- Extract coincidence projections and generate energy-gated-coincidence summed spectra
- Calculate the MDAs

Fig. 2. Glass vial containing radioxenon sample prepared by Seibersdorf laboratories, received by GBL15.
Fig. 3. electron-photon coincidence matrix from a measurement of 131mXe (with small 133Xe contamination) and inset: zoomed to the X-ray region. Each photon signal energy is used as a gate to project an electron spectrum (see right).

Straggled/backscattered conversion electrons. Should we clean out this signal or make use of it?
A high-resolution laboratory-based β-γ coincidence spectrometry system for radioxenon measurement

M. A. Goodwin, A. V. Davies, R. Britton et al.

Fig. 4. Summing individual projections to generate a summed projected coincidence spectrum for 131mXe
What about when we have a mixed xenon sample? Does this really work?

Can we generate ‘optimised’ spectra for each signal, using the different X-ray energies of Cs and Xe?

Fig. 5. Electron-photon coincidence matrix for a radioxenon sample containing ^{133}Xe, ^{135}Xe, ^{131m}Xe and ^{133m}Xe
Gating on the Xe X Kα gives a 133Xe β- continuum 20x lower than that in the Cs X Kα. Most of the contribution is from scattered conversion electrons.

Fig. 6. Coincidence matrix and projected spectra using the X(Kα) energy gate for Cs and Xe.
(Same can be applied to K_{β} X rays)

Fig. 7. Coincidence matrix and projected spectra using the $X(K_{\beta})$ energy gate for Cs and Xe
A high-resolution laboratory-based β-γ coincidence spectrometry system for radioxenon measurement

M. A. Goodwin, A. V. Davies, R. Britton et al.

Total X-ray gate: 20-40 keV (a low resolution photon spectrometer)

More selective signals means less interference.

Summing projections means greater detection efficiency.

Fig. 8. Optimising the signal by summing spectra from multiple photon energy gates

- **Cs X $K_{\alpha+\beta}$**
- **Xe X $K_{\alpha+\beta}$**

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO.
Putting an End to Nuclear Explosions

A high-resolution laboratory-based β-γ coincidence spectrometry system for radioxenon measurement

M. A. Goodwin, A. V. Davies, R. Britton et al.

- 133Xe is prevalent in the atmosphere due to civil nuclear processes contributing to the global radioxenon background, and high-activity 133Xe samples are often measured on the IMS.

- 131mXe is an important radionuclide - because the 3-isotope ratio plots do NOT allow for clear discrimination between a nuclear explosion and a civil source in many cases.

- On the 4-isotope ratio plot, 133mXe/131mXe is the most effective way to determine the possible source 'type' from IMS radioxenon measurements.

- High-resolution spectroscopy means the effect from 133Xe on the detection limit of 131mXe and 133mXe is reduced.

- Both metastable isomers are more readily detected using β-γ coincidence, rather than γ-singles.

Table: Isotope 4π MDA (mBq)

<table>
<thead>
<tr>
<th>Isotope</th>
<th>4π MDA (mBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>133Xe</td>
<td>1.0</td>
</tr>
<tr>
<td>131mXe</td>
<td>1.0</td>
</tr>
<tr>
<td>133mXe</td>
<td>1.0</td>
</tr>
<tr>
<td>135Xe</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Fig. 9. Detection limit (critical limit - L_2) of 131mXe as a function of the 133Xe measured activity concentration.

Fig. 10. 4-isotope ratio plot showing the civil nuclear processes domain and explosion domain.

See Kalinowski et al. for more information on the 4-isotope ratio plot. https://doi.org/10.1007/s00024-009-0032-1

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO.
• Improved sensitivity of 131mXe in real/environmental samples can enhance our dataset during an event of interest. Re-measurement at a laboratory could IMPROVE the sensitivity compared to the station, for some isotopes. With delayed re-measurements, perhaps the laboratories can detect isotopes that were not detected in the station measurement…

Fig. 9. Detection limit (critical limit - L_c) of 131mXe as a function of the 133Xe measured activity concentration

Fig. 10. 4-isotope ratio plot showing the civil nuclear domain and explosion domain.
A high-resolution laboratory-based β-γ coincidence spectrometry system for radioxenon measurement

M. A. Goodwin, A. V. Davies, R. Britton et al.

Disclaimer: The views expressed on this presentation are those of the author and do not necessarily reflect the view of the CTBTO

Electron Energy Resolution

Photon Energy Resolution

High-resolution photon detectors provide the signal discrimination required (Cs X-rays / Xe X-rays)

High-resolution electron detectors improve discrimination of 131mXe and 133mXe but this is not the most important interference

Low-resolution electron detectors are more efficient

Beginning GEANT4 simulations of HPGe+Plastic scintillator coincidence setup

New measurements with SAUNA/Xe-I beta-cell and GBL15 HPGe detectors

Current GBL15 system & most IMS-type systems

New measurements have recently been published:
Qi Li et al. Nuclear Inst. And Methods in Physics Research, A 988 (2021) 164939
Conclusions and Future Work

- Detector geometry has been optimised to improve detection efficiency by enclosing the PIPSBox with two HPGe detectors.
- High-resolution β-γ coincidence spectrometry can improve sensitivity to metastable isomers ^{131m}Xe & ^{133m}Xe with a high background signal of ^{133}Xe, when compared to a NaI(Tl)+Plastic set up.
- High-resolution γ-ray detector means it is possible to resolve Cs and Xe X-rays and create separate projections.
- Signals from K_α and K_β can be used selectively and the projections summed.
- PIPSBox geometry is excellent for getting near-4π geometry.
- More work required to determine whether the drop-off in detection efficiency is worth the enhanced electron energy resolution – Testing plastic+HPGe system with measurements and GEANT4 simulations.
A high-resolution laboratory-based β-γ coincidence spectrometry system for radioxenon measurement

M. A. Goodwin, A. V. Davies, R. Britton et al.

Thanks to those that have contributed to this project:

Marc Abilama (NPL), Rob Shearman (NPL), John McLarty (AWE), Graham Galvin (AWE), Phill Scivier (AWE)

Please visit the corresponding poster:

Measurement of gaseous fission products on an electron-photon coincidence detector system

(P3.1-485)