Low Level 140Ba Measurements on High Volume Air Filters using Gamma Coincidence Systems
Judah Friese†, Jon Burnett†, Brandy Gartman†, Ashley Davies‡, Matt Goodwin‡
†Pacific Northwest National Laboratory, U.S. ‡AWE, UK
P3.1 - 187
Low Level 140Ba Measurements on High Volume Air Filters using Gamma Coincidence Systems

Judah Friese$, Jon Burnett$, Brandy Gartman$, Ashley Davies$$, Matt Goodwin$$
$^\text{a}$Pacific Northwest National Laboratory, U.S. $^\text{b}$AWE, UK

Objective

- Experimentally measure 140Ba using gamma coincidence and singles at low levels for detection limit comparisons.
- Use exposed RASA filters with 24 hour and 1 week decay times to simulate measurements at a station versus counting at a laboratory.

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO Prepcom.
Method

140Ba was purified from a thermal irradiation of uranium.

Purification followed a series of ionic exchange and precipitation steps.

Stock solutions of 140Ba were quantified at high level using standard gamma spectroscopy.

Dilutions were made to spike filters at roughly 0.07 and 0.15 Bq of 140Ba rapidly to minimize the ingrowth of 140La.

Spiked filters included 24 hour of aerosol collection followed by either 24 hour or 7 days of decay prior to measurement.
Quantification and Characterization

- Stock 140Ba quantified by high level gamma spectroscopy at 174 Bq
- Gamma-Gamma coincidence at high level indicate which gamma pairs result in good data.
 - X-ray data less reliable
Low Level 140Ba Measurements on High Volume Air Filters using Gamma Coincidence Systems

Judah Friese*, Jon Burnett*, Brandy Gartman†, Ashley Davies‡, Matt Goodwin‡

*Pacific Northwest National Laboratory, U.S. †AWE, UK

Measurements

Low Background HPGe detectors in underground Laboratory
- P-type detector, 112% relative efficiency, copper housing with carbon fiber window

Advanced Radionuclide Gamma Spectrometer (ARGO)
- Coincidence BEGe detectors
- 140Ba coincidence energy lines 162.7 and 304.8 keV.
Low Level 140Ba Measurements on High Volume Air Filters using Gamma Coincidence Systems

Judah Friese, Jon Burnett, Brandy Gartman, Ashley Davies, Matt Goodwin

Pacific Northwest National Laboratory, U.S. AWE, UK

Singles at 0.07 Bq 140Ba and 0.15 Bq 140Ba

- First experiment measurement (0.07 Bq)
- Start Acquisition 11-MAR-2020 14:00
- Count time 80k s

- Second experiment measurement (0.15 Bq)
- Start Acquisition 19-MAR-2020 12:54
- Count time 86k s

No Zero Time Information
Low Level 140Ba Measurements on High Volume Air Filters using Gamma Coincidence Systems
Judah Friese, Jon Burnett, Brandy Gartman, Ashley Davies, Matt Goodwin
Pacific Northwest National Laboratory, U.S. AWE, UK

Putting an End to Nuclear Explosions

Poster No.: P3.1-187

CTBTO.ORG

Title: Coincidence at 0.15 Bq 140Ba/La

- Using gamma coincidence measurements, both 140Ba and 140La are observable due to the reduction in background.

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO Prepcom.

Summary:

- Coincidence at 0.15 Bq 140Ba/La

- Using gamma coincidence measurements, both 140Ba and 140La are observable due to the reduction in background.

Figure:

- Calibrated & summed detector energy projections

Additional Information:

- Pacific Northwest National Laboratory, U.S.
- AWE, UK
Low Level 140Ba Measurements on High Volume Air Filters using Gamma Coincidence Systems

Judah Friese¹, Jon Burnett¹, Brandy Gartman¹, Ashley Davies², Matt Goodwin²

¹Pacific Northwest National Laboratory, U.S. ²AWE, UK

24-hour Results Summary (IMS Station)

- RASA filters spiked with 140Ba
- 24-hour collection
- 24-hour decay delay
- 24-hour count (Blue squares)
- Week-long count (Red squares)

Key Observation

140Ba is only observable using coincidence methods during a 24-hour count at ~0.07 Bq.

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO Prepcom
Low Level ^{140}Ba Measurements on High Volume Air Filters using Gamma Coincidence Systems

Judah Friesel, Jon Burnett, Brandy Gartman, Ashley Davies, Matt Goodwin

Pacific Northwest National Laboratory, U.S. & AWE, UK

One Week Results Summary (IMS Lab)

- RASA Filter spiked with ^{140}Ba
- 24-hour collection
- 1 week decay delay
- 24-hour count (Blue Squares)
- 1 week count (Red Squares)

Key Observation

^{140}Ba is observable using both coincidence and singles methods at ~0.07 Bq.

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO Prepcom
Low Level 140Ba Measurements on High Volume Air Filters using Gamma Coincidence Systems

Judah Friesel*, Jon Burnett*, Brandy Gartman*, Ashley Davies*, Matt Goodwin*

*Pacific Northwest National Laboratory, U.S. *AWE, UK

Gains from Gamma- Gamma Coincidence

Coincidence measurements at IMS stations would detect 140Ba/La at levels that would otherwise be missed.

Lower detection limits afforded by coincidence methods likely extends to many radionuclides that decay with coincidence signatures.

Isotopes with a lower energy than 7Be would gain in detection.

Gamma singles measurements for IMS Laboratory scenarios are equivalent gamma- gamma coincidence measurements when the gamma energies are higher than 7Be.

Due to long radon decay times typical for IMS laboratory measurements- gains in coincidence background reduction are not as critical in station measurements.