

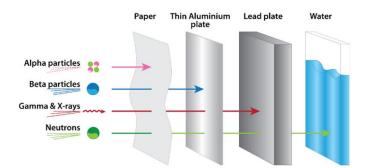
Dr. Mangiagalli Giacomo

Poster No. P3.1-527

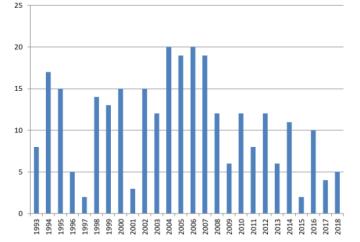
Dr. Mangiagalli Giacomo, CAEN SyS

Results of the characterization of a SNM backpack identifier that exceeds the ANSI and IEC standards.

Detection and identification of U, Pu, Am/Li, Am/Be, Cf-252 in shielded, moderated or masked condition through a patent pending parallelized algorithm that combines neutron and gamma energy, counting and multiplicity.



Dr. Mangiagalli Giacomo, CAEN SyS

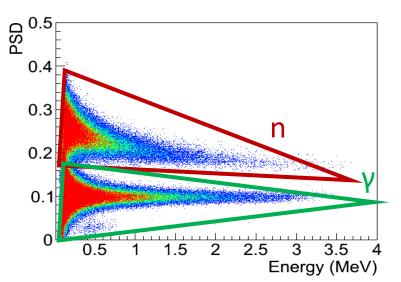

Passive detection systems used by homeland security to intercept smuggled SNM provide:

- Gamma counting alarm
- Gamma spectroscopy identification
- Neutron counting alarm

<u>Neutron identification (through fast neutron</u> measurement) was not available until today

Figure 1 Incidents reported to the ITDB that are confirmed, or likely, to be connected with trafficking or malicious use, 1993-2018.

"ITDB information (International and Trafficking Database – IAEA) demonstrates that unsecured nuclear and other radioactive material continues to be available and individuals and groups are prepared to engage in trafficking this material."



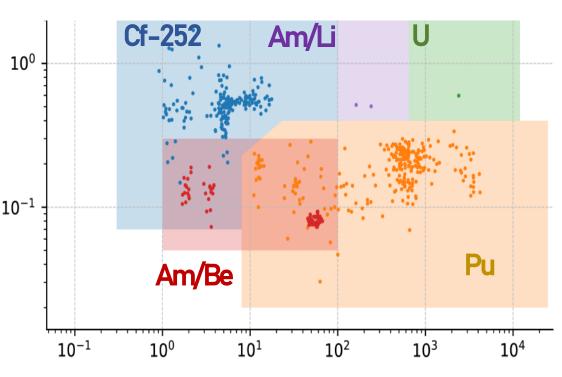
Dr. Mangiagalli Giacomo, CAEN SyS

High-efficiency gamma/neutron liquid scintillator

- Pulse Shape Discrimination provides real time γ/n discrimination
- based on the same PSD algorithm implemented by CAEN for the IAEA Fast Neutron Collar Monitor (fresh fuel verification)

Mid-high resolution . scintillator

- gamma spectroscopy identification
- used also in neutron source identification patented algorithm
 - enhances the SNM identification
 - Allows enrichment level
 estimation


Dr. Mangiagalli Giacomo, CAEN SyS

NEUTRON source identification patented algorithm results (the quantities on the axes cannot be revealed)

Each point is an identification measurement of a n source. For each source different distances, lead and poly shields and different masking sources were used.

If the color of the point matches with the color of the area, the Identification is correct

This is a 2D projection of a 3D plot, Am/Be (red) area has a 3rd parameter to distinguish it from Cf and Pu.

Dr. Mangiagalli Giacomo, CAEN SyS

tests carried out in accordance with the indications of the international standards IEC and ANSI

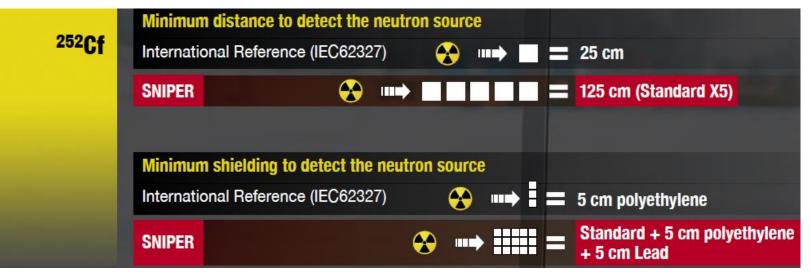
In these standards no requirements on the NEUTRON SOURCE IDENTIFICATION is provided because this feature was not available until today

IEC 62327 – 2017 (EU) Hand Held Instruments for the Detection and Identification of Radionuclides

- 1 s for gamma alarm (500 nSv/h above bkg, moving at 0,5 m/s @ 1m)
- 2 s for neutron alarm (252Cf 20.000 n/s @25 cm)
- 1 min or less for identification of isotope

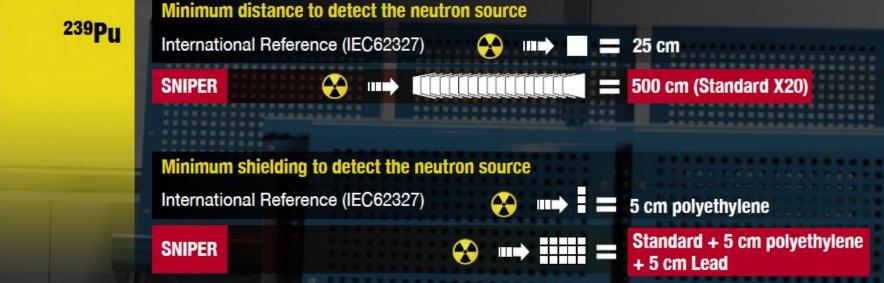
ANSI N42.34 – 2015 (USA)

Hand Held Instruments for the Detection and Identification of Radionuclides

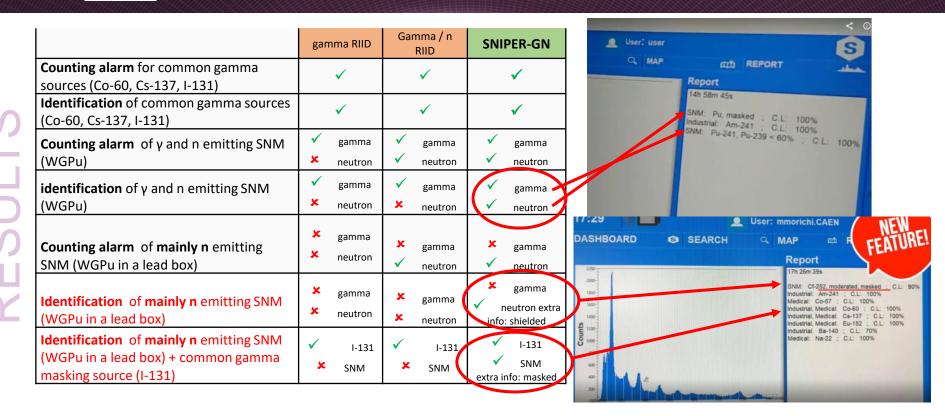

- 1 s for gamma alarm (100 nSv/h above bkg , moving at 0,5 m/s @ 1m)
- 1 s for neutron alarm (252Cf 20.000 n/s @25 cm)
- 2 min or less for identification of isotope

Dr. Mangiagalli Giacomo, CAEN SyS

	Minimum detectable activity to trigger a gamma alarm		
	Internatio	nal Reference (IEC62327)	500 nSv/h
	SNIPER	1/10 Standard	➡ 50 nSv/h



Dr. Mangiagalli Giacomo, CAEN SyS



Dr. Mangiagalli Giacomo, CAEN SyS

Dr. Mangiagalli Giacomo, CAEN SyS

An algorithm able to provide such level of accuracy in the SNM identification, with only 1 minute measurement, can be a step change to the portable instrumentation (BRD or RIID) used in the field of nuclear security.

It can open the possibility to new usage scenarios.

This technology, combined with multi-channel electronics equipped with PSD firmware, can be scaled to different sizes to cover scenarios from personal access control to cargo scanning

