

István Bondár¹, Barbara Czecze², Kevin Mackey³, Kenneth Abrams³, Anna Berezina⁴, Natalia Mikhailova⁵ and Rengin Gök⁶

P2.5-086

¹ELKH Research Centre for Astronomy and Earth Sciences, Hungary ²Roland Eötvös University, Hungary ³Michigan State University, USA ⁴Kyrgyzstan Instute of Seismology ⁵Kazakhstan National Data Center ⁶Lawrence Livermore National Laboratory, USA

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL-POST-822745

PUTTING AN END TO NUCLEAR EXPLOSIONS

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laborator

István Bondár, Barbara Czecze, Kevin Mackey, Kenneth Abrams, Anna Berezina, Natalia Mikhailova and Rengin Gök

ABSTRACT

The Lawrence Livermore National Laboratory (LLNL), Michigan State University (MSU), and national data centers in Central Asia (Kazakhstan, Kyrgyzstan and Tajikistan) digitized analog seismic bulletins in order to produce a new, unified seismic catalog. The main objective of the project is to provide a reliable seismicity map for new probabilistic seismic hazard analysis of Central Asia. The national network bulletin data are supplemented by data from the International Seismological Centre (ISC) bulletin.

We present the preliminary relocation results of more than 350,000 events recorded by hundreds of seismic stations in the region. Digitized bulletins extend to the early 1950s, providing millions of amplitude and phase arrival data. We relocated each event with iLoc, a single event location algorithm, using both ak135 and Regional Seismic Travel Time (RSTT) predictions to improve locations and to measure the performance of the RSTT model. The results show significant improvements in the understanding of regional seismicity in Central Asia. When data ingestion and relocation are finalized, the result will provide a basis for many other studies (e.g., travel-time tomography, seismicity) that have not been previously possible.

István Bondár, Barbara Czecze, Kevin Mackey, Kenneth Abrams, Anna Berezina, Natalia Mikhailova and Rengin Gök

views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

- The Lawrence Livermore National Laboratory (LLNL) and Michigan State University supported National Data Centers in Central Asia (Kazakhstan, Kyrgyzstan and Tajikistan) to compile analog and digital seismic bulletins in order to produce a new, unified seismic catalog.
- The objective of the project is to provide a new probabilistic seismic hazard analysis of Central Asia using the new PSHA-ready catalog.
- In order to improve the catalog for the PSHA, we relocate the compiled bulletin with iLoc using the global 3D RSTT velocity model.

A Comprehensive Earthquake Catalog in Central Asia

István Bondár, Barbara Czecze, Kevin Mackey, Kenneth Abrams, Anna Berezina, Natalia Mikhailova and Rengin Gök

views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

Compiled bulletin and event selection

The compiled bulletin consists of **398,728** events. We converted K-class magnitude to Mw using the regression Mw = 0.474 K-class - 0.774 to produce the input data set for the PSHA. To ensure the maximum achievable completeness, we selected events with magnitude > 3 and secondary azimuthal gap < 355°.

A Comprehensive Earthquake Catalog in Central Asia

István Bondár, Barbara Czecze, Kevin Mackey, Kenneth Abrams, Anna Berezina, Natalia Mikhailova and Rengin Gök

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

Events selected for relocation

The selection procedures kept about two-third of the events, **235,877** for relocation. The distribution of intermediate-depth events is quite flat.

CTBT: SCIENCE AND TECHNOLOGY CONFERE Poster No.: P2.5-086

A Comprehensive Earthquake Catalog in Central Asia

István Bondár, Barbara Czecze, Kevin Mackey, Kenneth Abrams, Anna Berezina, Natalia Mikhailova and Rengin Gök

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

iLoc relocation with RSTT

iLoc dramatically improves both the seismicity map and the depth distribution. The depth distribution indicates two distinct source zones in intermediate depths in the Hindu Kush – Pamir region.

István Bondár, Barbara Czecze, Kevin Mackey, Kenneth Abrams, Anna Berezina, Natalia Mikhailova and Rengin Gök

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laborator

Hindu Kush – Pamir region

A Comprehensive Earthquake Catalog in Central Asia

here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laborator

István Bondár, Barbara Czecze, Kevin Mackey, Kenneth Abrams, Anna Berezina, Natalia Mikhailova and Rengin Gök

Manual review in the region of interest

The ROI is defined as the boundary of a 300 km wide zone around the Central Asian countries.

Automatic solutions may get stuck in a local minima, produced airquakes or the default depth value was not the best choice for depth. A manual review may also detect split/joined or fake events. No automatic procedure can deal with these issues.

However, it is unrealistic to perform a full manual review on such a large dataset. Even if only two minutes are spent on each event, it would take more than 800 work days to go through the entire bulletin.

István Bondár, Barbara Czecze, Kevin Mackey, Kenneth Abrams, Anna Berezina, Natalia Mikhailova and Rengin Gök

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratore

Strategy for manual review

We devised a strategy for the manual review that prioritizes the events by the potential severity of location problems:

- 1. Events that iLoc failed to locate or had secondary azimuthal gap > 354°
- 2. Problematic solutions, abnormal exits from the iteration loop
- 3. Airquakes, discarded depth values due to large depth errors
- 4. Slow convergence
- 5. Events that moved by a large distance (> 100 km) from the initial guess
- 6. Large error ellipse (semi-major axis > 100 km)
- 7. Large secondary azimuthal gap (> 320°) or RMS residual (> 4s)
- 8. Events fixed to the default depth
- 9. The rest of the automatic locations are accepted without manual review.

CTBT: SCIENCE AND TECHNOLOGY CONFERENCE Poster No.: P2.5-086

A Comprehensive Earthquake Catalog in Central Asia

István Bondár, Barbara Czecze, Kevin Mackey, Kenneth Abrams, Anna Berezina, Natalia Mikhailova and Rengin Gök

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laborator

Strategy for manual review

Number of events and percentages of the total annual number of events in the hierarchical manual neview process, with the most severity level (potential location errors) at the bottom.

PUTTING AN END TO NUCLEAR EXPLOSIONS

A Comprehensive Earthquake Catalog in Central Asia

István Bondár, Barbara Czecze, Kevin Mackey, Kenneth Abrams, Anna Berezina, Natalia Mikhailova and Rengin Gök

he views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laborato

Summary

- We relocated the events in the comprehensive bulletin for Central Asia with iLoc. RSTT, in conjunction with iLoc, is increasingly used to relocate the seismicity of larger regions. RSTT almost invariably provides more accurate locations and offers an improved view of the seismicity.
 - Our strategy for hierarchical review offers an effective solution for identifying events that require manual review.
 - The relocations provide reliable input for the PSHA in Central Asia.