

CTBTO.ORG

A Unified Seismic Bulletin of Central Asia on the Base of Historical Data

Anna Berezina, Natalia Mikhailova, Kevin Mackey, Inna Sokolova, Bayan Bekturganova, Shohrukh Murodkulov, Elena Pershina, Kenneth Abrams, and Rengin Gök

T2.5 - 89

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

PUTTING AN END TO NUCLEAR EXPLOSIONS

Anna Berezina¹ (annaberezina8@gmail.com), Natalia Mikhailova² (mikhailova@kndc.kz), Kevin Mackey³ (mackeyke@msu.edu), Inna Sokolova² (sokolova.inessa@mail.ru), Bayan Bekturganova⁴ (bayan_0106@mail.ru), Shohrukh Murodkulov⁵ (shohrukh.m@mail.ru), Elena Pershina¹ (pev_71@mail.ru), Kenneth Abrams³ (abramsk@msu.edu) and Rengin Gök⁶ (gok1@llnl.gov)

CTBTO.ORG

¹ Institute of Seismology, National Academy of Science, Kyrgyz Republic, Bishkek, Kyrgyzstan
 ² Kazakhstan National Data Center, Institute of Geophysical Research, National Nuclear Center, Republic of Kazakhstan, Almaty, Kazakhstan
 ³Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA
 ⁴Seismological Experimental and Methodological Expedition, Ministry of Education, Republic of Kazakhstan, Almaty, Kazakhstan
 ⁵Institute of Geology, Earthquake Engineering and Seismology of the National Academy of Science, Republic of Tajikistan, Dushanbe, Tajikistan
 ⁶Lawrence Livermore National Laboratory, Livermore, CA, USA

ews expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

We have created a unified seismic bulletin of Central Asia to improve event locations and knowledge of seismic hazards. The National Data Centers and seismic networks of Kazakhstan, Kyrgyzstan, and Tajikistan have digitized historic bulletins of earthquakes with mb3.0 and greater from this region of Eurasia for 1949-2017. Soviet era data covering portions of Uzbekistan, Turkmenistan, and Russia have been included for completeness. Data available from the International Seismological Centre (ISC) for all years, and local digital seismic bulletins since 1993 were collected and merged with the digitized bulletins. In total, the unified bulletin contains over 10 million arrivals. To obtain regional magnitude conversion relationships from small events with traditional magnitudes (ML, mb and Ms), we use the coda calibration technique that allowed direct calculation Mw from source spectra that were obtained using the Coda Calibration Tool (CCT), developed at LLNL. After merging all available information and relocations, the Central Asia unified seismic bulletin was created. This is the first comprehensive bulletin developed for this region.

This project fills in a considerable portion of a gap in data for the region, increases the accuracy of event parameters, preserves unique archival data, and supplements ISC bulletins with new data for the region.

Anna Berezina¹ (annaberezina8@gmail.com), Natalia Mikhailova² (mikhailova@kndc.kz), Kevin Mackey³ (mackeyke@msu.edu), Inna Sokolova² (sokolova.inessa@mail.ru), Bayan Bekturganova⁴ (bayan_0106@mail.ru), Shohrukh Murodkulov⁵ (shohrukh.m@mail.ru), Elena Pershina¹ (pev_71@mail.ru), Kenneth Abrams³ (abramsk@msu.edu) and Rengin Gök⁶ (gok1@llnl.gov)

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laborato

Region Under Study

The region under study includes all of Central Asia plus a border extending out about 300 km.

The data are divided into eras, analog and digital. The analog era includes 1900 through 1992. Digital era covers 1993-2017. Most of the data from the analog era has been manually typed as a part of this project. In most cases, the catalogs and bulletins from the digital era already in machine-readable format, were though still required merging in our «Quakebase» software developed for this project.

Anna Berezina¹ (annaberezina8@gmail.com), Natalia Mikhailova² (mikhailova@kndc.kz), Kevin Mackey³ (mackeyke@msu.edu), Inna Sokolova² (sokolova.inessa@mail.ru), Bayan Bekturganova⁴ (bayan_0106@mail.ru), Shohrukh Murodkulov⁵ (shohrukh.m@mail.ru), Elena Pershina¹ (pev_71@mail.ru), Kenneth Abrams³ (abramsk@msu.edu) and Rengin Gök⁶ (gok1@llnl.gov)

archive

CTBTO.ORG

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

Data Sources

Bulletin example from Tajikistan

Primary analog-era data sources for this project are the seismological archives in Central Asia. Data from the original seismogram analysis were recovered and merged from different networks. Some original seismograms were reanalyzed. Data were supplemented with catalogs and bulletins from the International Seismological Centre and Soviet publications. Digital-era data are from the digital seismic networks of each participating country.

Kyrgyzstan seismogram storage

Anna Berezina¹ (annaberezina8@gmail.com), Natalia Mikhailova² (mikhailova@kndc.kz), Kevin Mackey³ (mackeyke@msu.edu), Inna Sokolova² (sokolova.inessa@mail.ru), Bayan Bekturganova⁴ (bayan_0106@mail.ru), Shohrukh Murodkulov⁵ (shohrukh.m@mail.ru), Elena Pershina¹ (pev 71@mail.ru), Kenneth Abrams³ (abramsk@msu.edu) and Rengin Gök⁶ (gok1@llnl.gov)

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laborato

Database Software

origID

562	0	5619	197	7	1	11	2	29	37.00	37.50	56.64	10								
562	1	5620	197	77	1	13	5	55	12.00	38.40	75.50	130							11.0	
562	2	5621	197	17	1	14	15	46	13.00	36.70	71.20	160							12.0	
562	3	5622	197	77	1	16	0	30	12.00	36.00	70.50	70							13.0	
562	4	5623	197	17	1	16	23	21	33.00	39.51	73.36	10					4.4		11.6	
562	5	5624	197	17	1	18	15	9	57.50	39.38	73.58	33							10.6	
562	6	5625	197	77	1	22	23	59	48.00	42.35	80.70	33							10.0	
562	7	5626	197	77	1	23	12	14	36.00	36.00	69.50	80							12.0	
562	8	5627	197	77	1	23	22	23	2.00	36.70	70.80	230							12.0	
562	9	5628	197	77	1	25	7	56	7.00	35.90	68.70	80								
563	0	5629	197	77	1	26	12	15	35.80	40.46	74.31	33							10.6	
563	1	5630	197	77	1	29	23	29	12.00	39.05	71.83	29							10.6	
563	2 1	5631	197	17	1	30	10	36	0.40	39.46	73.63	26					5.0	-	12.6	
563	3	5632	197	77	1	31	10	18	20.40	39.68	73.33	33					4.1		11.4	
563	4	5633	197	17	1	31	14	26	14.60	40.08	70.86	20					6.3	6.0	15.5	
563	5	5634	197	17	1	31	15	24	39.30	40.11	70.80	5							11.0	
563	6	5635	197	77	1	31	21	8	2 80	40 13	70 83	5		-	-	-	-	-	10.8	
Sta BHK BHK		Dist 4.48 4.48	EVA1 193.2 193.2	Phase Pn Sn	1	тіm 09:25:3 09:26:1	e 1.0 9.0	TRes 3.7 0.9	Azim	AzRes	slow	SRes Def	SNR		Апр	Per	Qual	Magn	itude	ArrID 48999587 48999588
(6	xplo	sion)	Fut	nhace		Tim		TRoc	Ande	17000	Flow	enor pof	CND		400	Bor		Magn	tude	45570
BHK BHK WRS		4.48 4.48 5.34	193.2 193.2 253.9	Pn Sn Pn		09:25:3 09:26:1 09:25:3	1.0 9.0 9.8	3.7 0.9 0.6				T								48999587 48999588 22525895
PSP DDI		5.41	251.8	Pn Pn		09:25:4	1.0	-0.0				T					_e			22525896
NDI		7.10	182.8	Pn		09:26:0	5.7	2.5				T-					<u>d_</u>			48999591
NDI		7.10	182.8	S Pn	1	09:26:0	5.7	2.5				T_					đi			48999592
NDI		7.10	182.8	s Sn	1	09:27:1 09:32:3	8.5	-4.0				T					_e			48999594 22525897
HFS		46.92	322.0	P	1	09:32:4	6.8	-0.4				T			0.0		=			22525898
MBC		67.71	4.3	P		09:35:1	3.6	0.1				Ť_			15.0	0.60	ce			22525900
EVE	nt Date	70324	18 Sou	theast	Eri	Afghani RMS	Lati	tude Le	ongitu	de smaj	Smin	Az Depth	Err N	def	Nsta	Gap	mdist	Mdi	st Qu	al Author
197	7/01	/07 04	5:31:1	3.20	V. 3.		34.	5490	70.97	20		46.0	<u>.</u>		78					UK NEIS
197	7/01	/07 04	5:31:1	4.66	0.3	4 0.930	34.	6290	70.91	6.0	3.776	35 35.0	f	108	104	57	0.59	146.	54 m	ke EHB
	PRIM	E) fixed	d by 1 plosic	ISC Ani	alyst)	541					1010			200			2701		100
Mag	nitu	de Er	r NST	a Aut	nor	ori	qID													
8M dm		5.3		7 MOS	5	1552	229													
mb		5.2 0.	1 3	2 ISC		1552	232													
Sta		Dist	EVA	Phase	2	Tim	e .	TRes	Azim	AzRes	slow	SRes Def	SNR		Апр	Per	qual	Magn	itude	ArrID
PSF		0.59	145.4	PD		06:31:2	7.0	0.8				T					_e			22529421
KHC		2.95	9.6	Pb		06:32:0	3.0	-1.0				т					C.			22529423
KHC		2.95	9.6	sb	1	06:32:4	1.0	0.8				T					-1			22529425
KUL		2.95	345.0	p Sg Pn	1	06:32:4 06:32:0	8.0 9.0	2.0				T					-1 c.			22529426 22529427
KUL		3.47	345.0	sb	1	06:32:5	3.0	-1.8				Ť.					_1			22529428
DSH		4.34	337.2	Ph	1	06:32:2	1.0	2.8				T					C.T			22529429 22529430

5619 5618 1977 1 1 22 11 16.50 39.40 72.96 33

We developed a custom database entry software called «Quakebase», that allows the merging of multiple data formats and allows direct manual entry of catalogs and bulletins. For phase and bulletin data, scans of the original source material are dynamically linked in the software for preservation of legacy data.

	D		PT	Da	ate	HH M	M SS.SS	T_Err	Latitude	Longitude	Qu MinA	MajA	Alpha	h_km	Err_km	Kclass	Source	Scan 1	Scan 2	M
1977010	01221116-00	0001	0 E	1977	0101	22 11	16.50		39.4000	72.9600				33		10	EMCA			
1977010	05092421-00	0019	0 C	1977	0105	09 24	1 21.97	1.19	35.7917	77.6121	10.24	19.32	73	50.0			ISC			
1977010	07063110-00	0020	0 N	1977	0107	06 33	10.00	0.31	34.3000	70.9000							ISC			5
1977010	7063110-00	0020	1 N	1977	0107	06 33	13.20		34.5490	70.9720				46.0			ISC			5
1977010	7063110-00	020	1 N	1977	0107	06 33	14.66	0.34	34.6290	70.9100	5.0	6.0	35	35.0			ISC			
1977010	7063110-00	020	1 N	1977	0107	06 33	1 11.10	1.34	34.5685	70.9133	3.776	6.562	63	10.0			ISC			5
1977010	08220544-00	0021	0 E	1977	0108	22 05	5 44.87	1.55	37.3252	71.9211	13.8	21.55	67	120.0			ISC			
197701:	1022937-00	0002	0 E	1977	0111	02 29	37.00		37.5000	56.6400				10			EMCA			
197701:	3055512-00	0003	0 E	1977	0113	05 55	5 12.00		38.4000	75.5000				130		11	ENCA			
197701:	3055512-00	0003	1 E	1977	0113	05 55	5 12.00		36.8000	77.2000				33.0			ISC			
197701:	3055512-00	0003	1 E	1977	0113	05 55	5 10.70	0.74	38.1463	75.7662	8.867	13.53	72	135.0			ISC			4
197701:	3055512-00	0003	1 E	1977	0113	05 54	\$ 59.00		38.3390	75.9670				33.0			ISC			5
197701:	4154613-00	0004	0 E	1977	0114	15 44	5 13.00		36.7000	71.2000				160		12	EMCA			
197701	4154613-00	0004	1 E	1977	0114	15 44	5 08.00		36.4000	69.9000				160.0			ISC			
		001000	hipsed pe	increase.		call - caller o	- Contraction			a na se										
• •	F FI	d.	×		N	ew Event		New Ori	gin	Set Preferred	Mer	rge Eve	nt		Sci	an 1	Scan 2	Delete	Event	
Station	Della Inc.	-			1		Dec. N							-		-		1		-
	Deita Inv	Qu	Phase	енн	100	55.55	Per.n	FMn An	IIC Amm	Per.E FMe	Amic An	Im P	er.Z	Mz Ami	ic Amm	Azimu	th Slow	Kclass	Sensor	I Y
MNL	5.25	c	Pn	05	56	21.20	Per.n	-Mn An	IIC Amm	Per.E FMe	Amic An	am P	er.Z	Mz Ami	Amm	Azimu	ISC ISC	Kclass	Sensor	TY
MNL MNL	5.25 5.25	c c	Pn Sn	05	56 57	21.20 16.30	Per.n	-Mn An	nic Amm	Per.E FMe	Amic An	am P	er.Z	Mz Ami	ic Amm	Azimu	ISC ISC	Kclass	Sensor	Ty
MNL MNL WRS	5.25 5.25 5.32	c e	Pn Sn Pn	05 05 05	56 57 56	21.20 16.30 29.00	Per.a	FMn An	iic Amm	Per.E FMe	Amic An	im P	er.Z	-Mz Ami	ic Amm	Azimu	ISC ISC ISC	Kclass	Sensor	TY
MNL MNL WRS PSH	5.25 5.25 5.32 5.47	e e	Pn Sn Pn Pn Pn	05 05 05 05 05	56 57 56 56	21.20 16.30 29.00 32.00	Per.n	r Mnj An	uc Amm	Per.E FMe	Amic An	am P	er.Z	c Ami	ic Amm	Azimu	ISC ISC ISC ISC	Kclass	Sensor	Typ
MNL MNL WRS PSH PSH	5.25 5.25 5.32 5.47 5.47	e e	Pn Sn Pn Pn Sn Sn	05 05 05 05 05 05	56 57 56 56 57	21.20 16.30 29.00 32.00 34.30	Per.n	rmn An	uc Amm	Per.E FMe	Amic An	am P	er.Z	c	ic Amm	Azimu	ISC ISC ISC ISC ISC	Kclass	Sensor	Ty
MNL MNL WRS PSH PSH DDI	5.25 5.25 5.32 5.47 5.47 8.03	e e	Pn Sn Pn Pn Sn Sn Pn	05 05 05 05 05 05 05	56 57 56 56 57 57 57	21.20 16.30 29.00 32.00 34.30 06.70	Per.n	r Mn An	uc Amm	Per.E FMe	Amic An	im P	er.Z	c	ic Amm	Azimu	150 150 150 150 150 150 150	Kclass	Sensor	Typ
MNL MNL WRS PSH PSH DDI DDI	5.25 5.25 5.32 5.47 5.47 8.03 8.03	e e	Pn Sn Pn Pn Sn Sn Pn Pn Pn	05 05 05 05 05 05 05 05	56 57 56 56 57 57 57 57	21.20 16.30 29.00 32.00 34.30 06.70 14.10	Per.n	r Mnj An	uc Amm	Per.E FMe	Amic An	am P	er.Z	c d	ic Amn	Azimu	ISC ISC ISC ISC ISC ISC ISC ISC	Kclass	Sensor	Typ
MNL MNL WRS PSH PSH DDI DDI DDI DDI	5.25 5.25 5.32 5.47 5.47 8.03 8.03 8.03	e e	Pn Sn Pn Pn Sn Pn Pn pP Sn	e HH 05 05 05 05 05 05 05 05 05	56 57 56 56 57 57 57 57 58	21.20 16.30 29.00 32.00 34.30 06.70 14.10 32.10	Per.n	r Mnj An	uc Amm	Per.E FMe	Amic An		er.Z	c d	ic Amn	Azimu	1150 150 150 150 150 150 150 150	Kclass	Sensor	Typ
MNL MNL WRS PSH DDI DDI DDI DDI DDI	5.25 5.25 5.32 5.47 5.47 8.03 8.03 8.03 8.03 8.03	e e	Pn Sn Pn Pn Sn Pn Sn Pn Sn Sn SS	e HH 05 05 05 05 05 05 05 05 05 05	56 57 56 57 57 57 57 57 58 58 58	21.20 16.30 29.00 32.00 34.30 06.70 14.10 32.10 44.60	Per.n	r Minj An	uc Amm	Per.E FMe	Amic An		er.Z	c d	ic Amn	Azimu	ISC ISC ISC ISC ISC ISC ISC ISC ISC ISC	Kclass	Sensor	Tyt
MNL MNL WRS PSH DDI DDI DDI DDI DDI DDI DDI	5.25 5.25 5.25 5.47 5.47 8.03 8.03 8.03 8.03 8.03 8.03 8.03	e e	Pn Sn Pn Pn Sn Pn pn Sn SS SSS	e HH 05 05 05 05 05 05 05 05 05 05 05	56 57 56 57 57 57 57 58 58 58 58	21.20 16.30 29.00 32.00 34.30 06.70 14.10 32.10 44.60 54.90	Per.n	rma An	uc Amm	Per.E FMe	Amic An		er.Z	c d	ic Amm	Azimu	1150 150 150 150 150 150 150 150	Kclass	Sensor	Tyt
MNL WRS PSH DDI DDI DDI DDI DDI DDI KKR	5.25 5.25 5.32 5.47 5.47 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03	c e	Pn Sn Pn Pn Sn Pn pP Sn SS SS SS Pn	e HH 05 05 05 05 05 05 05 05 05 05	56 57 56 57 57 57 57 58 58 58 58 58 58 58	21.20 16.30 29.00 32.00 34.30 06.70 14.10 32.10 44.60 54.90 09.00	Per.n	r Mn An		Per.E FMe	Amic An		er.Z	c d	ic Amm	Azimu	1150 150 150 150 150 150 150 150	Kclass	Sensor	Tyt
MNL MNL WRS PSH DDI DDI DDI DDI DDI KKR NDI	5.25 5.25 5.32 5.47 5.47 8.03 8.03 8.03 8.03 8.03 8.03 8.21 9.52	e	Pn Sn Pn Pn Sn Pn pP Sn SS SSS Pn Pn Pn Pn Pn Pn Pn Pn Pn Pn	e HH 05 05 05 05 05 05 05 05 05 05	56 57 56 57 57 57 57 58 58 58 58 58 58 57 57	21.20 16.30 29.00 32.00 34.30 06.70 14.10 32.10 44.60 54.90 09.00 24.00	Per.n			Per.E FMe	Amic An		er.Z	c d	ic Amm	Azimu	ISC ISC ISC ISC ISC ISC ISC ISC ISC ISC		Sensor	141
MNL MNL WRS PSH DDI DDI DDI DDI DDI DDI KKR NDI NDI	5.25 5.25 5.32 5.47 5.47 8.03 8.03 8.03 8.03 8.03 8.21 9.52 9.52	e e i	Pn Sn Pn Pn Sn Pn pP Sn SS SSS Pn Pn Sn SS SSS Pn Sn SS SSS	e HH 05 05 05 05 05 05 05 05 05 05	56 57 56 57 57 57 57 58 58 58 58 58 58 58 57 57 59	21.20 16.30 29.00 32.00 34.30 06.70 14.10 32.10 44.60 54.90 09.00 24.00 04.00	Per.n	r Mn An	sic Amm	Per.E FMe	Amic An		er.Z	c d	ic Amm	Azimu	ISC ISC ISC ISC ISC ISC ISC ISC ISC ISC		Sensor	Ty
MNL MNL WRS PSH DDI DDI DDI DDI DDI DDI KKR NDI NDI MAIO	5.25 5.25 5.32 5.47 5.47 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03	e e i e	Pn Sn Pn Pn Sn Pn pP Sn SS SSS Pn Pn Sn SS SSS Pn Pn Pn Pn Pn Pn Pn Pn Pn Pn	e HH 05 05 05 05 05 05 05 05 05 05	56 57 56 57 57 57 57 58 58 58 58 58 58 57 57 57 57 59 58	21.20 16.30 29.00 32.00 34.30 06.70 14.10 32.10 44.60 54.90 09.00 24.00 04.00 08.50	Per.n		sic Amm	Per.E FMe	Amic An		er.Z	c d	ic Amm	Azimu	ISC ISC ISC ISC ISC ISC ISC ISC ISC ISC		Sensor	IY
MNL MNL WRS PSH DDI DDI DDI DDI DDI DDI KKR NDI NDI MAIO	5.25 5.25 5.32 5.47 5.47 5.47 8.03 8.03 8.03 8.03 8.03 8.03 8.03 8.03	e e i e	Pn Sn Pn Pn Pn Pn Pn Sn SS SSS Pn Sn SS SSS Pn Pn Sn Pn Pn Sn Pn Pn Pn Pn Pn Pn Pn Pn Pn P	e HH 05 05 05 05 05 05 05 05 05 05	56 57 56 57 57 57 57 58 58 58 58 58 57 57 57 57 59 58	21.20 16.30 29.00 32.00 34.30 06.70 14.10 32.10 44.60 54.90 09.00 24.00 04.00 08.50	Per.n	FMn An		Per.E FMe	Amic An		er.Z	c d	(C Amm	Azimu	ISC ISC ISC ISC ISC ISC ISC ISC ISC ISC		Sensor	Ty

Anna Berezina¹ (annaberezina8@gmail.com), Natalia Mikhailova² (mikhailova@kndc.kz), Kevin Mackey³ (mackeyke@msu.edu), Inna Sokolova² (sokolova.inessa@mail.ru), Bayan Bekturganova⁴ (bayan_0106@mail.ru), Shohrukh Murodkulov⁵ (shohrukh.m@mail.ru), Elena Pershina¹ (pev_71@mail.ru), Kenneth Abrams³ (abramsk@msu.edu) and Rengin Gök⁶ (gok1@llnl.gov)

CTBTO.ORG

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

Analog Era (1900-1992) Catalog and Bulletin Assembly CATALOG BULLETIN

RESULTS

The analog era data, from 1900-1992, for Central Asia contains over 230,000 event entries and over 1.6 million arrivals from 10 primary and secondary sources

Anna Berezina¹ (annaberezina8@gmail.com), Natalia Mikhailova² (mikhailova@kndc.kz), Kevin Mackey³ (mackeyke@msu.edu), Inna Sokolova² (sokolova.inessa@mail.ru), Bayan Bekturganova⁴ (bayan_0106@mail.ru), Shohrukh Murodkulov⁵ (shohrukh.m@mail.ru), Elena Pershina¹ (pev_71@mail.ru), Kenneth Abrams³ (abramsk@msu.edu) and Rengin Gök⁶ (gok1@llnl.gov)

CTBTO.ORG

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

Digital Era (1993-2017) Catalog and Bulletin Assembly

RESULTS

The digital era data, from 1993-2017, for Central Asia contains over 725,000 event entries and over 10 million arrivals from 8 primary and secondary sources

Anna Berezina¹ (annaberezina8@gmail.com), Natalia Mikhailova² (mikhailova@kndc.kz), Kevin Mackey³ (mackeyke@msu.edu), Inna Sokolova² (sokolova.inessa@mail.ru), Bayan Bekturganova⁴ (bayan_0106@mail.ru), Shohrukh Murodkulov⁵ (shohrukh.m@mail.ru), Elena Pershina¹ (pev_71@mail.ru), Kenneth Abrams³ (abramsk@msu.edu) and Rengin Gök⁶ (gok1@llnl.gov)

e views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

Seismic Stations

Data from over 400 local and regional stations, both permanent and temporary, were compiled for this project. Additional data from stations reporting to the ISC are included. The adjacent map shows the Central Asia stations used.

Anna Berezina¹ (annaberezina8@gmail.com), Natalia Mikhailova² (mikhailova@kndc.kz), Kevin Mackey³ (mackeyke@msu.edu), Inna Sokolova² (sokolova.inessa@mail.ru), Bayan Bekturganova⁴ (bayan_0106@mail.ru), Shohrukh Murodkulov⁵ (shohrukh.m@mail.ru), Elena Pershina¹ (pev_71@mail.ru), Kenneth Abrams³ (abramsk@msu.edu) and Rengin Gök⁶ (gok1@llnl.gov)

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

Strong Motion Station: ARZ Station Code: ARZ Open Date: 2000 Close <u>Date :</u> open

Location: 43.349 E, 76.008949 N 650m GPS Coordinates

Address: Almaty, Ahmetova st. 13.

Recording History:

ARZ Strong Motion Station was opened at 2000. The station is located in the bomb shelter of the Aviation Repair Plant, in a monolithic concrete basement. Soil conditions at the station – interstratification of loams, sandy loams and sands.

Ground motion registration is performed by the Altus-ETNA accelerometer (Kinemetrix, USA). The type of sensor is "EpiSensor" - an orthogonally oriented three-axis compensation accelerometer with a full signal amplitude of 2g, natural frequency of 50 Hz, attenuation of 70% of the critical and dynamic range of more than 135 dB (0.01-50 Hz). The device is working in the trigger mode. The trigger threshold is set to 0.05% of the total signal amplitude. The amplitude, phase, and transient characteristics of the sensor are shown below.

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO

Station Metadata

The Quakebase software links to a 'Passport' for each station that contains comprehensive histories, metadata, and calibrations. This recovery of calibration and other information is critical. Seismogram digitizations of legacy data rely on system response files to conduct quantitative research.

Anna Berezina¹ (annaberezina8@gmail.com), Natalia Mikhailova² (mikhailova@kndc.kz), Kevin Mackey³ (mackeyke@msu.edu), Inna Sokolova² (sokolova.inessa@mail.ru), Bayan Bekturganova⁴ (bayan_0106@mail.ru), Shohrukh Murodkulov⁵ (shohrukh.m@mail.ru), Elena Pershina¹ (pev_71@mail.ru), Kenneth Abrams³ (abramsk@msu.edu) and Rengin Gök⁶ (gok1@llnl.gov)

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

Seismicity Map

RESULTS

A map of the original epicenters shows the seismic activity of Central Asia. Using the compiled catalog, events are being relocated. Please see poster T2.5-86 by István Bondár for these procedures and results.

Magnitude conversion is obtained from direct Mw measurements using Coda Calibration Tool (CCT).

Disclaimer: The views expressed on this poster are those of the author and do not necessarily reflect the view of the CTBTO

CTBTO.ORG

Anna Berezina¹ (annaberezina8@gmail.com), Natalia Mikhailova² (mikhailova@kndc.kz), Kevin Mackey³ (mackeyke@msu.edu), Inna Sokolova² (sokolova.inessa@mail.ru), Bayan Bekturganova⁴ (bayan_0106@mail.ru), Shohrukh Murodkulov⁵ (shohrukh.m@mail.ru), Elena Pershina¹ (pev_71@mail.ru), Kenneth Abrams³ (abramsk@msu.edu) and Rengin Gök⁶ (gok1@llnl.gov)

CTBTO.ORG

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

Ongoing Work

The Unified Seismic Bulletin and event relocations will be used for Probabilistic Seismic Hazard Assessment (PSHA) for Central Asia. A part of this process is establishment of a unified Mw magnitude scale for the region and an understanding of magnitude recurrence relationships (Gutenberg-Richter a- and b- values)

Importance of the Earthquake Catalogue Quality for PSHA <u>PSHA Workflow</u>

Anna Berezina¹ (annaberezina8@gmail.com), Natalia Mikhailova² (mikhailova@kndc.kz), Kevin Mackey³ (mackeyke@msu.edu), Inna Sokolova² (sokolova.inessa@mail.ru), Bayan Bekturganova⁴ (bayan_0106@mail.ru), Shohrukh Murodkulov⁵ (shohrukh.m@mail.ru), Elena Pershina¹ (pev_71@mail.ru), Kenneth Abrams³ (abramsk@msu.edu) and Rengin Gök⁶ (gok1@llnl.gov)

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or the Lawrence Livermore National Laboratory

- This project developed a unified comprehensive seismological catalog and bulletin for Central Asia by merging regional data from archives in Kazakhstan, Tajikistan, and Kyrgyzstan as well as other regional published and unpublished data.
- The project saves remaining historical archives of seismic bulletins and metadata, the loss of which is irreplaceable.
- The project fills in a considerable portion of the existing gap in the database for the observational period after 1990, as well as increase the accuracy in the source parameterization of events for earlier period, and assists to preserve the unique seismic information available in corresponding archives.
- The bulletin and catalog, in conjunction with regional strong motions records and active fault distribution will be used to determine accurate seismic hazard assessments for modernized building codes of countries in Central Asia using the PSHA methodology.
- Catalog and bulletin data, and updated station metadata from this study is planned to be submitted to the ISC for inclusion into their globally accessible data products. The data will be useful to the global monitoring community.

Please, see poster T2.5-86 by István Bondár for results of event relocations

