

Side event on metrology SE01-O4

Applying ISO/IEC 17025 and PTS/IMS Requirements: A Case Study on Primary Calibration of Infrasound Sensors

Dominique RODRIGUES

Laboratoire National de Métrologie et d'Essais (LNE)

10th September 2025

A Case Study on Primary Calibration of Infrasound Sensors

Applying ISO/IEC 17025 and CTBTO IMS Requirements:

Dominique RODRIGUES

Why ISO/IEC 17025 Accreditation?

Benefits of Accreditation

- Formal recognition of technical competence by an independent third party.
- Builds trust and credibility through impartial external assessment.
- International recognition via ILAC Mutual Recognition Arrangement.
- Alignment with PTS/IMS requirements.
- Ensures consistent, reproducible, and traceable results.

Applying ISO/IEC 17025 and CTBTO IMS Requirements:

A Case Study on Primary Calibration of Infrasound Sensors

Dominique RODRIGUES

Calibration Method Overview

Primary Calibration Using a Laser Pistonphone (IEC TR 61094-10)

- The infrasound sensor to be calibrated is exposed to a calculable sound pressure produced in a coupler by a piston.
- The sound pressure is calculated from the acoustic impedance of the coupler and the measurement of the volume velocity of the piston.
- Calibration range: 10 mHz 20 Hz
- Method in accordance with IEC TR 61094-10.

Side event

on metrology

SE01-04

Dominique RODRIGUES

ISO/IEC 17025 Mapping to PTS/IMS Requirements for Service Providers

Legend - PTS/IMS Requirements mapping (in development):

- * Whole clause is relevant
- ** Specific requirements apply
- *** Some requirements may not apply

Side event

metrology

SE01-04

Dominique RODRIGUES

Implementation: General & Structural Requirements (Clauses 4 & 5)

Key aspects:

- Impartiality (4.1)
 - Clear policy & preventive measures.
 - Formal staff commitment, reviewed annually.
 - Escalation to Ethics Committee if needed.
- Confidentiality (4.2)
 - Professional secrecy for staff.
 - Controlled access (premises & IT).
 - Secure data transmission & limited third-party sharing.
- Structural Framework (5)
 - Legal entity: Public Industrial and Commercial Establishment (EPIC)
 Governance: board with industry, consumers, administrations, staff.
 - Accredited scope clearly defined & limited.
 - Unified QMS across all sites, supported by quality actors.

Side event

metrology

SE01-04

Dominique RODRIGUES

Implementation: Resource Requirements (Clause 6)

Key Aspects:

- Personnel (6.2)
 - Qualified staff with a specific training plan.
- Facilities & environmental (6.3)
 - Controlled laboratory environments (temperature).
- Equipment (6.4)
 - Regularly maintained & calibrated equipment, with documented records.
- Metrological traceability to SI units (6.5)
 - Full traceability chain to SI units
- External services and supplies (6.6)
 - Approved suppliers and external services under QMS control

Dominique RODRIGUES

Implementation: Resource Requirements - Metrological Traceability (Clause 6.5)

Metrological Traceability

 Metrological traceability shall be ensured for all equipment that contributes to the validity of the reported results.

VTI Instruments CMX09 chassis

EMX-4350 Digitizer

SMX-2002 Relay board controls

EMX-1434 Waveform generator

EMX-2500 Ethern Controller

Measurand: Sensor pressure sensitivity

$$M_P = \frac{U_m}{P_c} = \frac{U_m}{j\omega S_p \delta_z Z_T}$$

Critical equipment calibrated by accredited labs.

Unbroken chain of calibrations, each contributing to the measurement uncertainty.

Renishaw RLU10

Solenoid valve

Device Under Test

Monitoring sensors

M c Av
A e SI
A k Kc
K
Side ev

on metrology

SE01-04

Dominique RODRIGUES

Implementation: Resource Requirements - Equipment (Clause 6.4)

Example: Provisions for the cylindrical coupling cavity

Documented procedure for handling, transport, storage, use and planned maintenance

Critical specifications identified: dimensions (radius & height)

- Calibration periodicity: every 5 years
- Conformance criteria: dimensional drift < 0,2 mm

Records maintained:

Manufacturing files, service history, calibration certificates, return-to-service report.

Safeguards: restricted access to trained staff.

Control: immediate tagging & withdrawal of non-compliant equipment.

on metrology SE01-04

Dominique RODRIGUES

Implementation: Process Requirements (Clause 7)

Key Aspects:

- **Review of requests and contracts (7.1)** \rightarrow Clarity on customer requirements.
- **Selection, verification & validation of methods (7.2)** \rightarrow Appropriate and proven methods.
- **Sampling (7.3)** \rightarrow Non applicable in this context
- **Handling of calibration items (7.4)** → identification, protection, traceability.
- **Technical records (7.5)** → Complete, accurate, retrievable.
- **Measurement uncertainty (7.6)** \rightarrow Evaluation of all significant contributors.
- **Ensuring validity of results (7.7)** \rightarrow QC, comparisons, repeat checks.
- **Reporting (7.8)** \rightarrow Clear, traceable, compliant with requirements.
- **Complaints (7.9)** → Process to handle external feedback.
- **Nonconforming work (7.10)** → Detection, control, corrective action.
- **Data control (7.11)** → Integrity, backup, confidentiality.

Side event on metrology

SE01-04

Dominique RODRIGUES

Implementation: Process Requirements Selection, verification & validation of methods (Clause 7.2)

Method Selection

- Calibration based on IEC TR 61094-10
 - Laser pistonphone → internationally recognized primary method

Verification

- Confirm method performance to achieve required uncertainty:
 - Equipment performance checks
 - Interlaboratory comparisons (PTSAVH.A-C1, INFRA.AUV-C1, LNE internal comparison)

Validation

- Non-standard methods shall be validated:
 - Assessment of influencing factors
 - Evaluation of measurement uncertainty
 - Comparison with other validated methods (pressure reciprocity, static pressure sensors)
 - Interlaboratory comparisons

A e SI NA mol K cd

metrology SE01-O4

Dominique RODRIGUES

Implementation: Process Requirements Measurement uncertainty (7.6)

- ISO/IEC 17025 requires laboratories to evaluate all significant sources of uncertainty.
- Evaluation is performed according to the GUM methodology.
- For the laser pistonphone method, main contributors include:
 - Measurement of sensor output
 - Piston properties
 - Coupler properties
 - Sensor parameters
 - Imperfection of theory
 - Processing of results
 - Repeatability of measurements
- Expanded uncertainties (k=2, 95% confidence): typically in the range
 - 0.04 dB 0.08 dB (magnitude)
 - 0.22° 0.90° (phase)

R CdV h kg
A e Sl N_A mo
k K Cd
Cd

Side event

metrology

SE01-04

Dominique RODRIGUES

Implementation: Process Requirements Ensuring validity of results (7.7)

- ISO/IEC 17025 requires labs to monitor validity of results continuously.
- Aim: detect anomalies, ensure ongoing reliability and comparability.
- Approaches include:
 - Systematic evaluation of bias using reference standards
 - Keller PAA-33X (freq. < 0.1 Hz)
 - B&K 4160 (freq. > 0,1 Hz)
 - Review of reported results
 - Participation in interlaboratory comparisons

Side event

metrology

SE01-04

Dominique RODRIGUES

Implementation: Process Requirements Data control (7.11)

- ISO/IEC 17025 requires controlled management of data & information.
- Reliable data control ensures integrity, transparency and reproducibility of results.
- Software managed like equipment
 - Version & change history
 - Secure storage
- Validation of data collection, processing & reporting through:
 - Cross-checks with independent systems
 - Independent/manual calculations on the same dataset
 - Reference datasets with known results
 - Interlaboratory comparisons

Software Workflow for Laser Pistonphone Calibration

Side event on metrology

SE01-04

Dominique RODRIGUES

Implementation: Management system requirements (Clause 8)

- ISO/IEC 17025 requires a management system to support technical activities.
- Two implementation options:
 - Option A → follow Clauses 8.2–8.9 (quality system within the lab).
 - Option B → operate under ISO 9001-certified management system.
- Core elements (Clause 8.x):
 - Document control & records management
 - Management of risks & opportunities
 - Corrective actions & continual improvement
 - Internal audits & management reviews

A e SI

on metrology SE01-O4

Dominique RODRIGUES

Conclusion

- ISO/IEC 17025 accreditation ensures competence, reliability, and international recognition of calibration results.
- LNE's capability: pioneer in ISO/IEC 17025-accredited laboratory for primary infrasound calibration (COFRAC accreditation n°2-28, Scope available on www.cofrac.fr)
- Contribution to PTS/IMS: supports sensor reliability, global comparability, and confidence in monitoring results.
- Opportunities for collaboration: interlaboratory comparisons, method development, and knowledge sharing.

