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Measurement is ubiquitous in our everyday lives, NPLE
it makes everything function, but often goes unnoticed




Criticality at the Fukushima Daiichi Nuclear Power Plant NPLE
& Monitoring for Nuclear Weapons with the CTBTO.
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* NPL Nuclear Metrology Group standardisations of radio-Kr fission isotopes.
* ‘Real time’ signatures for reactor criticality, vital in Fukushima clean up.
* New methods with AWE & CTBTO for radioxenon sigs from weapons tests.
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"Arguably, the ability to measure physical
properties accurately has tremendous
survival value that gives humans an
adaptive evolutionary advantage”
Lord Kelvin (1883)




International agreement:
The Metre Convention

= On 20 May 1875, 17 governments signed The Metre
Convention, to “assure the international unification
and improvement of the metric system”

= Diplomatic treaty that established an organizational
structure for Member States to act together on units
of measurement

= Established the International Bureau of Weights and
Measures (BIPM), one of the oldest international
organizations still in existence

Salon de I'horloge inside the French
Ministry of Foreign Affairs

Seal of the BIPM

Image courtesy of France Diplomatie

CCBY 3.01GO, BIPM



Evolution of the SI

The S| constantly evolves

Image courtesy of Martin Milton, BIPM
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...and many smaller changes as well, except to the kg, until recently...



stable

Atmospheric CO, at Mauna Loa Observatory
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The New International System of Units (2019)




20 May 2025: World Metrology Day

Image courtesy of worldmetrologyday.org
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Classical mechanics

mGrApréddse measurement.”
Isaac Newton F o= 1900) F = gm

1642-1726 r?




Quantum mechanics founders

Einstein

Bohr

INTERNATIONAL YEAR OF

Quantum Science
and Technology

100 years of quantum is just the beginning...



The strange world of quantum is highly counter-intuitive! NPLE

Wave Nature ) ,_ E and h

of Matter SR p

Quantization

~ 6.6 x1073% s

Superposition ?

Entanglement

Observed Affected
“here’ “over there'




Quantum Summary

* Things can be in two states at the same time

* Things are described by probabilities

* The act of measurement has a profound effect
* Things can interact non-locally

* It's iImpossible to know all things exactly

Yet, quantum mechanics is the most
successful theory which describes
nature with unpresented precision




Quantum Applications today NPLE

Loads of modern technology is underpinned by quantum technology

Atomic clocks

Semiconductors Nuclear power



How to reach the quantum regime ? NPLE

* Make things very small » Make things very cold




Laser Cooling

NPLE

Plane = Atom

Balls = Photons



Before atomic time
Ephemeris time

North Pole

South Pole



NPL 1955: birth of atomic time
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How do atomic clocks work?

Microwave < / f I microwave

frequency
9192631 770 Hz

radiation

Second defined with Cs
transition frequency



How do atomic clocks work?

Microwave
radiation

Optical
radiation

E = hf
f microwave
! I frequency
9192631 770 Hz
few GHz ~ 10° Hz
—_—
f optical
0 frequency
—_—

few hundred THz ~ 1014 Hz




Progress in atomic clock measurements NPLE
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Progress in atomic clock measurements

Fractional uncertainty
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Quantum Electrical Metrology
and the Sl



Josephson effect
Predicted in 1962 by Brian Josephd4on
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The quantum Hall effect
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Discovered in 1980 by Klaus von Kilitzing
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Quantum Revolution #2

Superposition ’%ﬁl':l ?
o7
Entanglement
Observed Affected
“here" “over there'




The SQUID

Superconducting QUantum Interference Device

O An interferometer for
superconducting current

—: SQUID
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Quantum Magneto Encephalography NPLE




Atomic magnetometry

Light Source
(probe)

Detector

Light
Source
(pump)




Atomic magnetometry applications

* Non-Destructive Testing (NDT)

* Inertial sensing for Positioning,
Navigation and Timing

* New forms of computing
« OPM-MEG

Optically Pumped Magnetometer
Magnetoencephalography

Neurolmage 2020, 219, 116995



Gravimetry

* Measuring gravity — very important!

» Key to geology, hydrology, climate science, satellite flight etc.

170992704
174

Sphericity Equatorial ‘bulge’ Mountain ranges Mantle & core mass

distribution
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Large reservoirs



Birmingham Mobile Atom Gravimeter NPLE

National Physical Laboratory
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Atomic eloeks gravimeters?

* General Relativity — gravitational time dilation

Time flows slower in higher gravitational potentials
» Earth’s core 2.5 yrs younger than crust!

» Atomic clocks incredibly sensitive

Time ‘speedup’ detected across 1 mm cloud of
atoms!

» Use clocks as sensors for missing ‘dark’ matter?




Optical clock
comparison in Europe




Detection principle




Displacement (um)

Detection of earthquakes with ultra-stable optical links
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Science

RVAAAS

“Ultrastable laser interferometry for earthquake
detection with terrestrial and submarine cables”,
Marra G, Clivati C, Luckett R, Tampellini A, Kronjager J,
Wright L, Mura A, Levi F, Robinson S, Xuereb A, Baptie B

and Calonico D., Science, 361 (2018)

RESEARCH

OPTICAL SEISMOLOGY

2018

Ultrastable laser interferometry for
earthquake detection with terrestrial
and submarine cables

Giuseppe Marra'*, Cecilia Clivati’, Richard Luckett’, Anna Tampellini**,
Jochen Kronjiiger’, Louise Wright', Alberto Mura?, Filippo Levi?, Stephen Robinson’,
André Xuereb®, Brian Baptie®, Davide Calonico®

Detecting ocean-floor seismic activity is crucial for our understanding of the interior
structure and dynamic behavior of Earth. However, 70% of the planet's surface is covered
by water, and seismometer coverage is limited to a handful of permanent ocean bottom
stations. We show that existing telecommunication optical fiber cables can detect seismic
events when combined with state-of-the-art frequency metrology techniques by using the
fiber itself as the sensing element. We detected earthquakes over terrestrial and submarine
links with lengths ranging from 75 to 535 kilometers and a geographical distance from the
earthquake's epicenter ranging from 25 to 18,500 kilometers. Implementing a global seismic
network for real-time detection of underwater earthquakes requires applying the proposed
technique to the existing extensive submarine optical fiber network.

bations to detect seismic waves, vibration, and
any other sources of acoustic noise. With these in-
terferometric techniques, we can measure changes
as small as a few femtoseconds in the propaga-
tion delay experienced by the laser light traveling
in the fiber. This corresponds to micrometer-scale
length changes that can be measured over lengths
of fiber up to several thousands of kilometers. We
achieve this level of sensitivity in just 1 s of mea-
surement time using a laser stabilized to state-
of-the-art Fabry-Pérot cavities made of ultralow
expansion (ULE) glass (Corning) (22). Metrology-
grade lasers generate phase-stable light over the
entire propagation time through the fiber, which
ensures that propagation time changes are at-
tributed exclusively to the fiber.

Our experiments used light from a ULE cavity-
stabilized laser that we injected at one end of a
standard terrestrial or submarine optical link
that consists of a fiber pair, one fiber used for
each direction of propagation (Fig. 1B). The two
fibers are connected at the far end of the optical
link to form a loop so that the light returns to the
transmitter after a round trip. We combined the
injected and returned optical signals on a photo-

“TT TD NA fN’L

DI RICERCA METROLOGICA

British
Geological Survey

HATURAL ENVIRONMENT RESEARCH COUNCIL

L-Universita
ta' Malta




Almost all seismic stations are on land!

Image from the International Registry of Seismograph Stations (IR) website



A global network of environmental sensors

Submarine cables

Existing
Planned Over 1.4 million km of cable already installed and counting...



A global network of environmental sensors
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Submarine cables
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Planned
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Real-time

Continuous (24/7, 365/year)
Can co-exist with data

No change to the seafloor infrastructure!
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Over 1.4 million km of cable already installed and counting...



Using seafloor cables for climate change research
Detecting ocean currents
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Interferometric-based seismic detection tests on Southern Cross Next cable
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Seismic analysis:
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Summary

« Quantum sensing better than
classical, but a bit “weird”!

* Next quantum revolution is here

* Quantum technology will
continue to shape our lives!
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Thank You!

July 2025
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