
Broadening the Impact of OSI Exercises and Field Tests

Mohamed ElGabry

Egyptian National Data Center
National Research Institute of Astronomy and Geophysics

11 September 2025

DISCLAIMER

The views, thoughts, and opinions expressed in this presentation are solely those of the author and do not necessarily reflect the official policy or position of the National Research Institute of Astronomy and Geophysics (NRIGA) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

Mohamed ElGabry

Place your
programme
code here
[Arial Bold;
10.5pt.]
Example
Ke01

Final Verification Measure

•OSI = Final Verification Measure

- Triggered by **International Monitoring System (IMS) anomalies** or other Treaty mechanisms
- Collect factual findings to **confirm or refute a suspected nuclear test**.

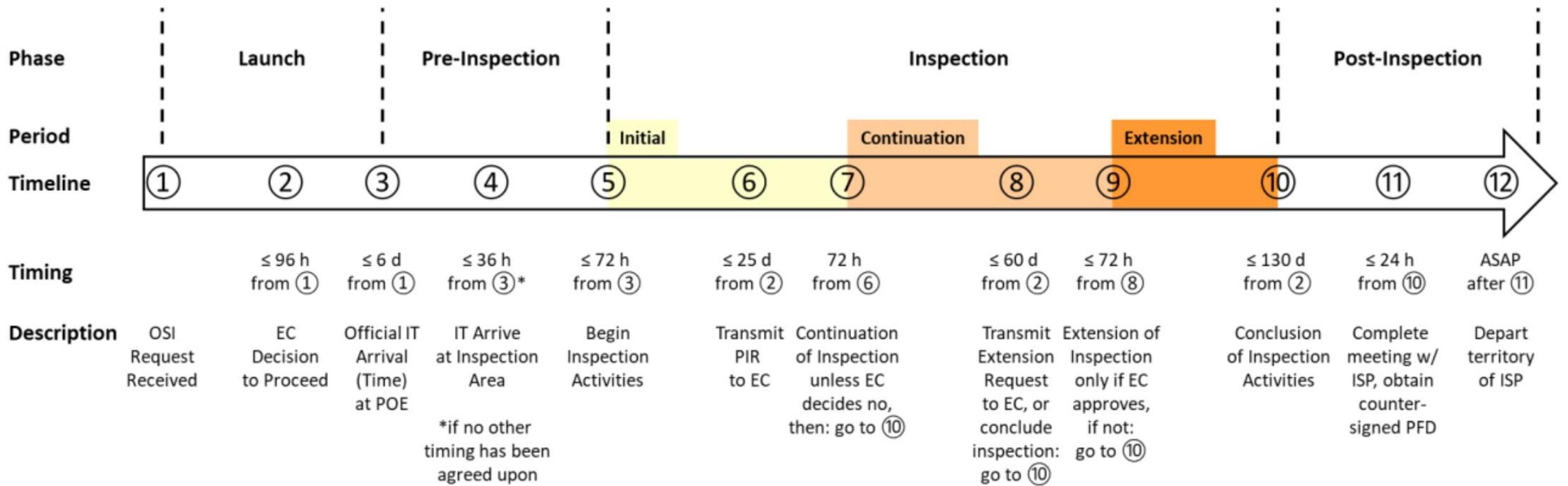
Inspection Facts (as defined by CTBT Protocol)

Maximum Area: up to 1,000 km² (defined inspection area).

Duration: 25 days, extendable up to 130 days with EC approval.

Inspection Team: up to 40 inspectors.

Techniques: 17 techniques permitted by Treaty



DISCLAIMER

The views, thoughts, and opinions expressed in this presentation are solely those of the author and do not necessarily reflect the official policy or position of the National Research Institute of Astronomy and Geophysics (NRIAG) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

Field Operations — Operational Layers

Mohamed ElGabry

Place your
programme
code here
[Arial Bold;
10.5pt.]
Example
Ke01

Inspection activities and techniques, Treaty Protocol Para.69

- (a) Position finding from the air and at the surface to confirm the boundaries of the inspection area and establish coordinates of locations therein, *in support of the inspection activities*;**
- (b) Visual observation, video and still photography and multi-spectral imaging, including infrared measurements, at and below the surface, and from the air, to search for anomalies or artifacts;**
- (c) Measurement of levels of **radioactivity** above, at and below the surface, using **gamma radiation monitoring** and **energy resolution analysis** from the air, and at or under the surface, to search for and *identify radiation anomalies*;**
- (d) Environmental sampling and analysis of solids, liquids and gases from above, at and below the surface *to detect anomalies*;**
- (e) Passive seismological monitoring for aftershocks to localize the search area and facilitate *determination of the nature of an event*;**
- (f) Resonance seismometry and active seismic surveys to *search for and locate underground anomalies, including cavities and rubble zones*;**
- (g) Magnetic and gravitational field mapping, ground penetrating radar and electrical conductivity measurements at the surface and from the air, as appropriate, to detect anomalies or artifacts;**
- (h) Drilling to obtain radioactive samples.**

DISCLAIMER

The views, thoughts, and opinions expressed in this presentation are solely those of the author and do not necessarily reflect the official policy or position of the National Research Institute of Astronomy and Geophysics (NRIAG) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

Mohamed ElGabry

Place your
programme
code here
[Arial Bold;
10.5pt.]
Example
Ke01

Field Operations — Operational Layers

- Health, Safety & Security HSS: protocols and risk management
- Logistics: mobility, transportation, field operations, equipment provisioning
- Privileges and Rights: Inspector privileges and State rights (ISP context) — legal & diplomatic dimensions
- Treaty and Protocol Text, Operational Manual, Standard Operating Procedures (SOPs)

DISCLAIMER

The views, thoughts, and opinions expressed in this presentation are solely those of the author and do not necessarily reflect the official policy or position of the National Research Institute of Astronomy and Geophysics (NRIAG) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

Mohamed ElGabry

The Mandate

The Resolution establishing the CTBT Preparatory Commission

The Commission shall make all necessary preparations in fulfilling the requirements of the treaty and its protocol, for the support of on-site inspections from the entry into force of the Treaty. It shall, *inter alia*:

- (a) Develop and prepare for the approval of the initial session of the Conference of the States Parties:
 - I. An operational manual containing all appropriate legal, technical and administrative procedures;
 - II. A list of equipment for use during on-site inspections**
- (b) Develop a programme for the training of inspectors
- (c) **Acquire or otherwise make provision for the availability of relevant inspection equipment, including communications equipment, and conduct technical tests of such equipment as necessary.**

Place your
programme
code here
[Arial Bold;
10.5pt.]
Example
Ke01

DISCLAIMER

The views, thoughts, and opinions expressed in this presentation are solely those of the author and do not necessarily reflect the official policy or position of the National Research Institute of Astronomy and Geophysics (NRIAG) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

Exercises and Field Tests

- Simulated 37-day OSI in Jordan (Nov–Dec 2014) over a ~1,000 km² area with ~40 inspectors.
- *IFE14 tested 15 of the OSI techniques prescribed by the Treaty*
- Introduced an improved in-field communications system and rapid-deployment capabilities for moving tons of equipment

Exercises and Field Tests

- *BUE24 (June 2024) simulated the continuation phase of an OSI in mountainous terrain in Hungary*
- *Nearly 200 participants from 40+ countries and ~100 tonnes of equipment were deployed across a 382 km² area*
- *Tested updated inspection team functionality (ITF), search logic and data workflows, including use of the Geospatial Information Management (GIMO) platform*

Outcomes / Impact

Operational Readiness

ensure that once the Treaty enters into force, OSI teams are fully prepared and equipment is functional

Procedure Validation

Running realistic scenarios validates and refines inspection procedures, workflows and reporting formats (leading to updated manuals).

Technical Improvement

Data collected allow calibration of sensors and testing new equipment in situ, improving detection resolution.

Efficiency Gains

Use of integrated tools (e.g. GIMO) and refined team protocols results in faster, more effective search missions (shorter mission planning cycles, better information sharing).

Strengthened Compliance

Demonstrating these capabilities builds confidence in the CTBT regime; the exercises show that inspectors can find evidence if needed, thus reinforcing deterrence.

Challenges

Data Integration

Combining diverse datasets (seismic waveforms, radiometric counts, GIS layers, lab results) in real time is complex. Large volumes of data from varied sources require robust fusion tools

Logistical

Transporting 150+ tones of heavy, delicate equipment into remote areas under tight time pressure with Calibration requirements and personnels limitation

Time Constraints

Certain signals decay quickly – e.g. the number of aftershocks and short-lived radionuclides dissipate; Inspectors must deploy within days to capture these signals; ITF cycle(steps 1-5);

Environmental

OSI take place in environments ranging from arid deserts to the Arctic, impacting inspectors, equipment, search logic, logistics, and every component of the inspection.

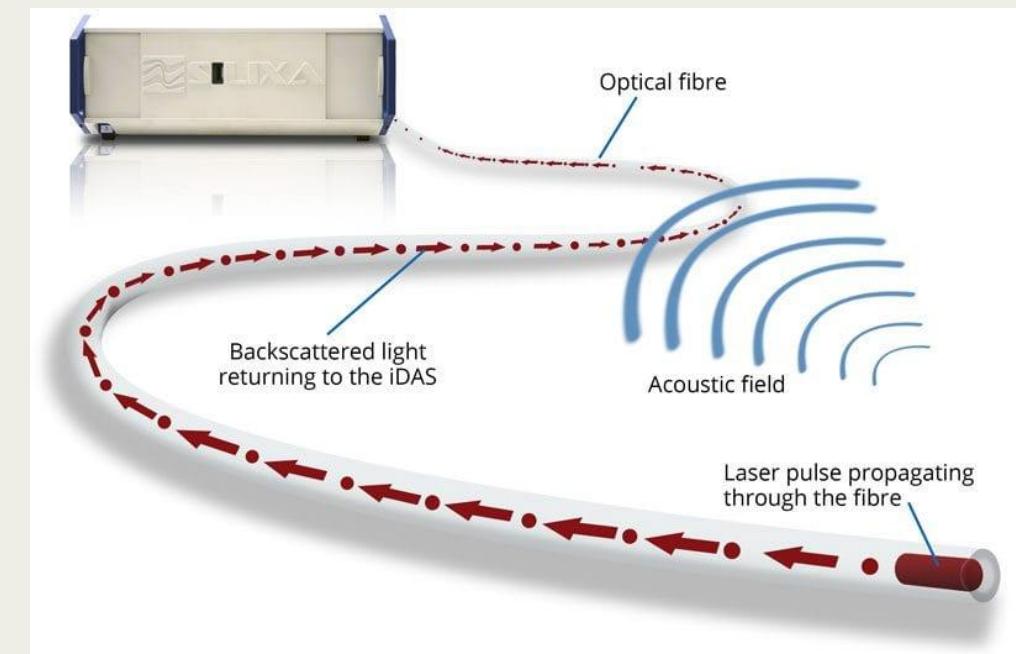
Technical Limits

Instruments have finite resolution and detection capabilities; some signals can be confused with background anomalies; Keeping all equipment calibrated under field conditions is also challenging

Mohamed ElGabry

Place your
programme
code here
[Arial Bold;
10.5pt.]
Example
Ke01

From Data to Improvement — Turning Field tests & Exercise Data into Value


- High-volume, multi-modal datasets enable recalibration and QA/QC
- Refine analytical algorithms and develop better acquisition SOPs
- Procurement insights: inform future equipment acquisition, lifecycle planning, and upgrades.
- Document lessons learned for operational manuals and training.
- Knowledge transfer: lessons learned feed directly into operational manuals, training, and inspector preparation.
- Innovation driver: exercise-derived data supports R&D, fostering continuous improvement of OSI capabilities

DISCLAIMER

The views, thoughts, and opinions expressed in this presentation are solely those of the author and do not necessarily reflect the official policy or position of the National Research Institute of Astronomy and Geophysics (NRIAG) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

Data Fusion Tools

Autonomous Systems

Logistics Prep

Sensor Advances

Novel Processing methods

Mohamed ElGabry

Place your
programme
code here
[Arial Bold;
10.5pt.]
Example
Ke01

Broadening Engagement — Who to Involve

- Academic researchers and university labs
- Technical experts from member states
- Industry partners
- Students and early-career professionals

DISCLAIMER

The views, thoughts, and opinions expressed in this presentation are solely those of the author and do not necessarily reflect the official policy or position of the National Research Institute of Astronomy and Geophysics (NRIAG) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

Mohamed ElGabry

Place your
programme
code here
[Arial Bold;
10.5pt.]
Example
Ke01

Broadening Engagement - Impact

- Stronger feedback loops for procedures, software and equipment design
- Innovation pipelines from academia and industry
- Expanded capacity across member states — localized expertise
- Greater transparency, trust-building and improved readiness

DISCLAIMER

The views, thoughts, and opinions expressed in this presentation are solely those of the author and do not necessarily reflect the official policy or position of the National Research Institute of Astronomy and Geophysics (NRIAG) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

Mohamed ElGabry

Place your
programme
code here
[Arial Bold;
10.5pt.]
Example
Ke01

Vision Forward

- Keep OSI techniques robust, treaty-compliant and future-ready
- Institutionalize data-sharing mechanisms and collaborative Research and Development
- Codify lessons into living manuals that evolve with technology
- Leverage exercise-derived data to strengthen scientific foundations and preparedness
- Broaden engagement to harness innovation, build capacity, and reinforce trust

DISCLAIMER

The views, thoughts, and opinions expressed in this presentation are solely those of the author and do not necessarily reflect the official policy or position of the National Research Institute of Astronomy and Geophysics (NRIAG) or the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).

Conclusions

- **OSI exercises** prove that the CTBT's verification system is robust, operational, and future-ready.
- **Exercise-derived data** fuels improvements in equipment, methods, and data integration.
- **Community engagement** broadens the impact — linking experts, policymakers, and students.
- **Shared goal:** Strengthen trust, enhance readiness, and ensure effective treaty compliance.

👉 *By operationalizing technological advances and broadening participation, OSI remains a cornerstone of global nuclear disarmament and security.*

