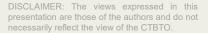
PTS-805


The development of a long term strategy for the sustainment of the International Monitoring System

Xyoli Perez Campos, Michelle Grobbelaar

Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)

Presentation Date: 11 September 2025

Xyoli Perez Campos, Michelle Grobbelaar

PTS-805

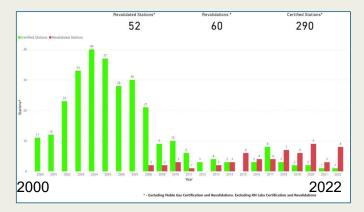
To ensure a **high quality**, **authenticated** and **secure detection** network and an assured **flow of data**, a comprehensive assessment of the **long-term sustainment** requirements of the IMS Network, looking prospectively from 2026 onwards for a twenty-year period was developed.

Xyoli Perez Campos, Michelle Grobbelaar

PTS-805

Diagnosis of current situation

Sources within the PTS	 □ DOTS: equipment inventory & history □ IRS (IMS Reporting System)/PRTool/SOPET(PCA)/JIRA: station behavior, problem reports, failure analysis
	☐ SAP: financial data, expenditure history
Sources outside the PTS	 Station operators: IMS and other networks, infrastructure data, questionnaires Other network managers (e.g. Geoscope, USGS/SCSN) Equipment manufacturers: technology refreshment plans, expected lifetime
Data identification and	☐ Estimation of life cycle per technology
information management	Various statisticsPredictability of problems/failure

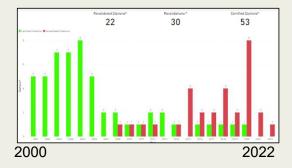


Xyoli Perez Campos, Michelle Grobbelaar

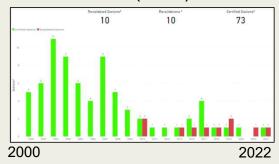
PTS-805

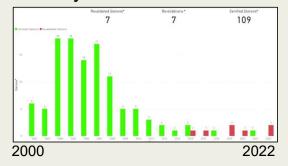
Diagnosis of current situation

Total number of: certifications (▮) and revalidations (▮) per year



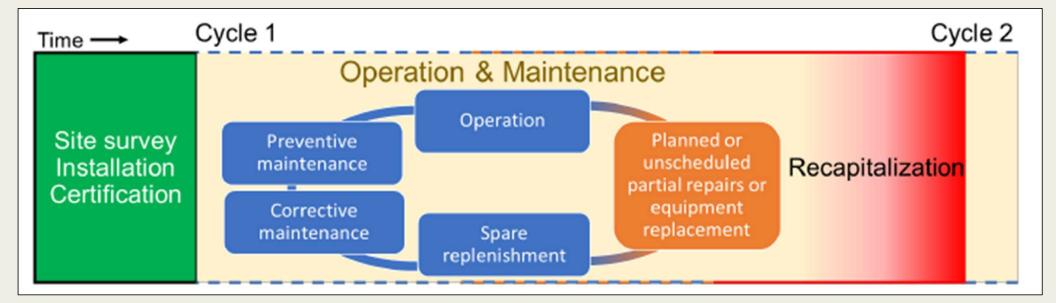
■ Differences among technologies


Primary seismic stations


Infrasound stations

Radionuclide (Part.) stations

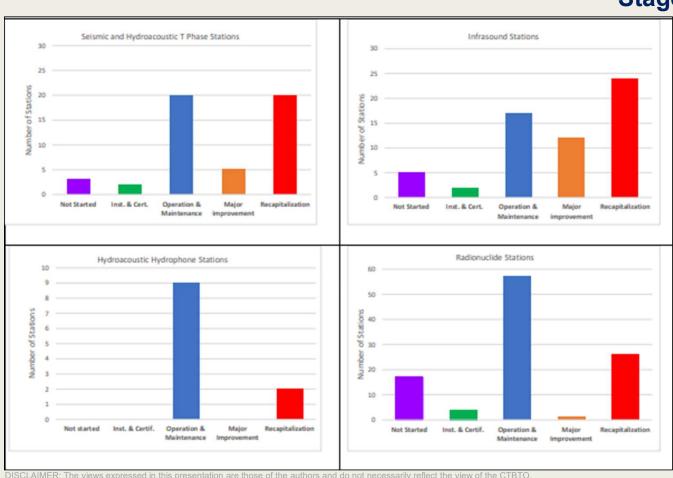
Auxiliary seismic stations

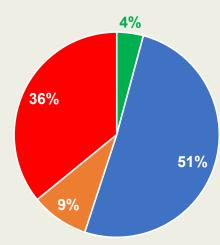


Xyoli Perez Campos, Michelle Grobbelaar

PTS-805

Life cycle





Xyoli Perez Campos, Michelle Grobbelaar

Stage of IMS stations lifecycle

PTS-805

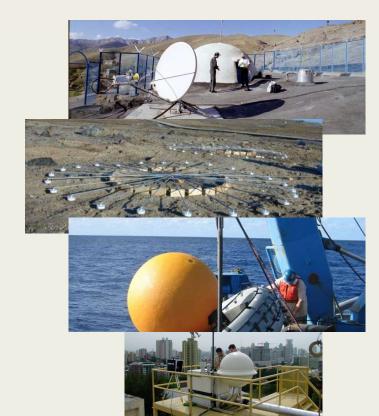
- Inst. & Cert.
- O & M
- Major Improvement
- Recapitalization

Xyoli Perez Campos, Michelle Grobbelaar

Lifespan of subsystems

PTS-805

Tec	chnology specific identification of functional components.
Comprehensive estimates of the lifespans of technological station subsystems:	
a)	Equipment lifespans provided by manufacturers (when available)
b)	Obsolescence and technological foresight
c)	Failure analysis (gained from past 20 years of operating the IMS)
d)	Feedback from station operators (SOs)
e)	Capability of equipment repair and strategic decisions on type of equipment used across the network (standardization)
f)	Careful balance is sought between maintenance cost and cost of the replacement of the technological station subsystems.
Est	timated lifespans of equipment used to obtain average costs for subsystems.
•	erating equipment until failure is <u>not recommended (</u> high risk of prolonged zero data ailability).


Xyoli Perez Campos, Michelle Grobbelaar

Risk of No Action

PTS-805

Delay in sustainment actions: Impact

Equipment at many IMS stations has reached (or will soon) the **end of service life.** Equipment is becoming **obsolete**. **Spare parts** for ageing equipment are becoming increasingly **scarce**, with available stocks running low. **Infrastructure** is also **ageing** and needs to be replaced more frequently. A delay will have a knock-on effect across the network resulting in the reduction of the stations' mission capability and the **coverage** of the IMS Network. The IMS Network will **no longer** be capable to **perform** at the level that it was originally designed to achieve. ☐ Authentication of data may become compromised, jeopardizing the value and confidence that the data provides for detection and eroding confidence in global peace and security.

Xyoli Perez Campos, Michelle Grobbelaar

PTS-805

Main Identified Risks

Inability to deliver a global verification regime to monitor compliance with the comprehensive ban on nuclear explosions

One very clear mitigation strategy will be for the PTS to rely more heavily on the national means and voluntary assistance (both in-kind and financial).

	Quality of IDC products
1	Decreased percentage of events in the reviewed event bulletin (REB) for which the area of the location error ellipse is less than 1,000 km ²
2	Missing events of importance due to decrease of data availability (reduced number of detections and associations)

Xyoli Perez Campos, Michelle Grobbelaar

PTS-805

Main Identified Risks

	Mission capability/ Data availability/Network coverage
3	Limited capability to implement any plans/strategies.
4	Increased frequency of subsystem failure.
5	Future lack of specialized suppliers.
6	Lack of available spare parts for procuring.
7	Lack of cybersecurity protection from disruptive new developments (e.g. quantum computing) that may
	compromise data surety.
8	Increase cost of maintenance of obsolete equipment.
9	Run away cost due to delay maintenance or recapitalization
10	Simultaneous station failures due to similar ages and/or environments.
11	Loss of expert knowledge in engineering and development
12	Limited ability to address catastrophic failures.
13	Increased number of stations going through long periods of non-mission capability.
14	Decreased global detection coverage.
	Environment/Climate
15	Impact of Environmental and Climate Change on IMS Station

Xyoli Perez Campos, Michelle Grobbelaar

PTS-805

Conclusions

Current state of the IMS network has been technically assessed with a comprehensive
methodology.
Cost estimation to address the technical needs suggests a critical funding gap.
Updating the funding strategy is urgent.

Xyoli Perez Campos, Michelle Grobbelaar

PTS-805

Thank you

