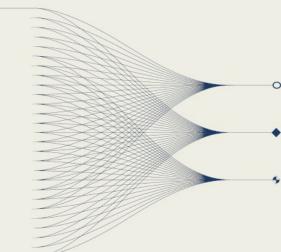


Imaging lava eruptions and crater morphology changes at a basaltic volcano using infrasound

- J. Barrière¹, A. Oth¹, J. Assink², N. d'Oreye^{1,3}, L. Evers^{2,4}
- ¹ European Center for Geodynamics and Seismology, Luxembourg
- ² Royal Netherlands Meteorological Institute, The Netherlands
- ³ National Museum of Natural History, Luxembourg
- ⁴ Delft University of Technology, The Netherlands

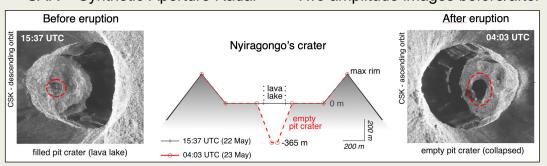


•••••• AND MAIN RESULTS

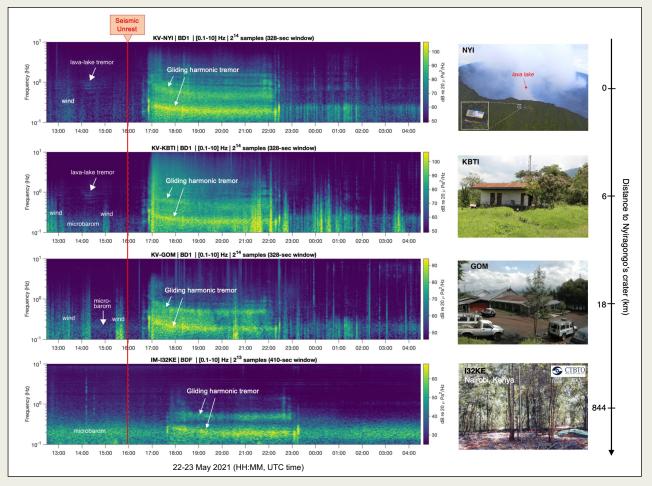
- Aside from a few well-instrumented volcanoes worldwide, accurately reconstructing the precise eruptive mechanisms and chronology is hampered by the lack of detailed visual observations in space and time
- Because they emit infrasound (low-pitched sound < 20 Hz), any changing and hazardous eruptive activity can be inferred with "specialised microphones".
- Case study at Nyiragongo volcano located in the Kivu Rift, towering above the cities of Goma, D.R. Congo (~1 million inh.) and Gisenyi, Rwanda (~200 000)

Imaging lava eruptions and crater morphology changes at a basaltic volcano using infrasound

J. Barrière et al.


1) Context : Nyiragongo volcano (D.R. Congo)

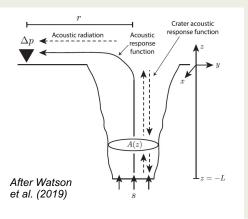
- The world's largest & persistent lava lake up to 2021, drained during its 3rd known (after 1977 and 2002) flank eruption on 22 May 2021
- The rupture of the edifice started around 15:57 UTC and initiated short-duration (~6 h) lava flows and a week-long magmatic intrusion (dyke)


2) What we know from space-based (SAR) observations?

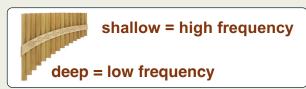
• SAR = Synthetic-Aperture Radar • Two amplitude images before/after

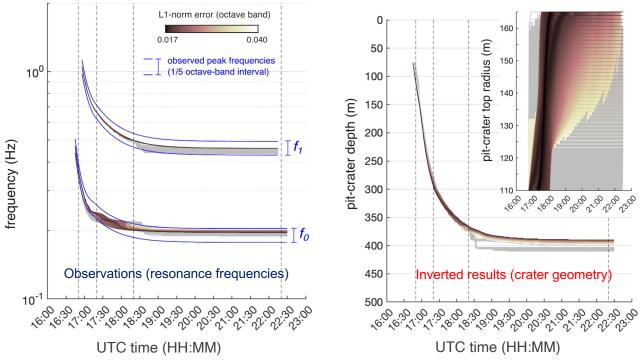
3) 22 May 2021 eruption : A long-range infrasonic tremor below 1 Hz

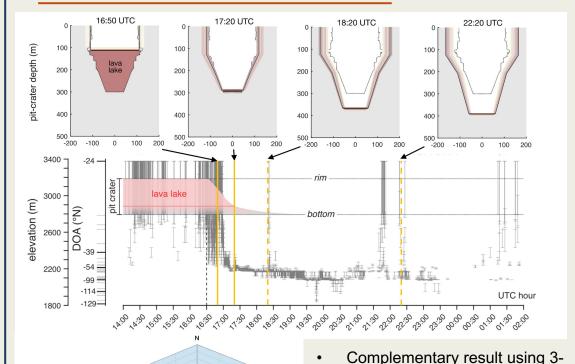
- Infrasound records close to the edifice (<20 km) up to Kenya (~800 km)
- Stations NYI, KBTI, GOM from KivuSNet network and station I32KE from IMS



Imaging lava eruptions and crater morphology changes at a basaltic volcano using infrasound


J. Barrière et al.


4) Nyiragongo's crater, a gigantic acoustic resonator


This tremor is the signature of Nyiragongo's crater acoustic resonance during the lava-lake drainage

We use the numerical code *CRes* for simulating quasi-1D wave propagation along depth inside an axisymmetric crater (https://github.com/leighton-watson/CRes)

5) The eruption scenario : crater + fissures

- sensor array on the flank (KBTI)

 Higher frequency band [1-8] Hz

 Potential sources (fissures) in line-of-sight with angles <15°

 Grid-search of DOA (Direction of Arrival) → Fissures opening
 - TUDelft University of Technology

 Koninklijk Nederlands
 Meteorologisch Instituut

