

- a) Rizzello, D., b) Koivisto, E.A.L., b) Gaya Pique, L., c) Armadillo, E.
- a) Tellus-Explora sas, Genoa, Italy

- b) On-Site Inspection Division, CTBTO Preparatory Commission, Vienna International Center, Austria
- c) Applied Geophysics Laboratory, DISTAV, University of Genoa, Genoa, Italy

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

INTRODUCTION

- On-site inspections (OSI) use geophysical methods to detect Underground Nuclear Explosion (UNE) observables.
- We present 3D MAG (magnetic field mapping), GRV (gravity field mapping), ERT (electrical resistivity tomography), FDEM (frequency-domain electromagnetics) and TDEM (time-domain electromagnetics) simulations of the observables, done by means of ad-hoc developed Python functions.
- By varying the observable parameters, we built a portfolio of 870 geophysical anomalies, crucial for:
 - Survey design
 - Interpretation of the collected data
 - Training for inspectors
 - Update of equipment list

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

GENERAL WORKFLOW

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

PHYSICAL/GEOMETRICAL PARAMETRIZATION OF UNE OBSERVABLES

- Underground Nuclear Explosion cavity radius (Rc) vs depth of burial (DOB):
 - Rc was retrieved from the multilithology Castagnola and Carnahan (1971) diagram, by hypothesizing an UNE 1 kt - yield in alluvium as reference, and different DOBs
 - Other geological environment could be however considered (tuff, salt, etc.)

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

PHYSICAL/GEOMETRICAL PARAMETRIZATION OF UNE OBSERVABLES

Alteration shell radii:

 inferred from Adushkin and Leith (2001) (providing shell radii normalized to yield^{1/3})

Chimney height/radius:

from Le Garrec (1999)

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

PHYSICAL/GEOMETRICAL PARAMETRIZATION OF UNE OBSERVABLES

- Shell porosities:
 - Adushkin and Spivak (2004) real case
- We identified three shells (porosity> background) and accordingly computed:
 - density (Gassmann's equation)

$$\rho_{\text{bulk}} = (1 - F)\rho_{\text{ma}} + F(S_{\text{w}}\rho_{\text{w}} + S_{\text{g}}\rho_{\text{g}})$$

electrical resistivity (Archie's law)

$$R_{bulk} = a\phi^{-m}s_w^{-n}R_w$$

- Magnetic susceptibility:
 - From Maris (2019) (no relationship with porosity)

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

04.5-276

CONSIDERED SCENARIOS

- After an extensive bibliographic review, we identified five main UNE scenarios:
 - Cavity ("CAV")
 - Cavity + alteration shells ("HAL")
 - HAL + collapse chimney ("CHI")
 - HAL + collapse chimney + apical void + casing ("VOI")
 - Horizontal emplacement:
 - horizontal topography ("FLT")
 - or sloping topography ("SLP")

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

IMPLEMENTED CODE

- The need for 3D geophysical simulations was evident
- We therefore developed Python codes for each scenario, by using the opensource SimPEG libraries for geophysical simulations
- Codes designed for the geophysical instruments available at CTBTO and relevant input/output data file format:
 - ABEM Terrameter LS2 (ERT)
 - Iris Promis (FDEM)
 - Abem WalkTEM (TDEM)
- Output files ready for inversion
- Developed code released to CTBTO

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

"HAL" MODELS

- Considered variable parameters:
 - DOB (Depth Of Burial)
 - \circ R_c (cavity radius)
 - o ρ_i , ρ_m , ρ_o , ρ_b (shell/back. density contrasts, dry/saturated)
 - \circ χ_i , χ_m , χ_o (shell magnetic susceptibility contrasts)
 - I (magnetic inclination)
 - \circ σ_i , σ_m , σ_o , σ_b (shell/back. el.conductivity, dry/saturated)

	min	max
DOB	100 (m)	500 (m)
R_c	13 (m)	45 (m)
ρ_i (e.g.)	-0.58 (g/cm3)	-0.16 (g/cm3)
χ_i (e.g.)	-5.1*10-3 (S.I.)	-3.7*10-3 (S.I.)
1	-90°	90°
σ_i (e.g.)	8e-4 (S/m)	5e-3 (S/m)

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

"HAL" MODEL RESULTS

- GRV: not suitable (very low anomalies)
- MAG: useful with shallow alt. zone and high χ contrasts
- ERT: generally useful; better with shorter arrays
- FDEM: very difficult for dry rocks; perceivable with high-freq and long Tx-Rx separation in sat.rocks
- TDEM: difficult; small loops preferable

	Suitable		Not suitable	Anomaly range
GRV			X	0.08-0.47 mGal (P2P)
MAG		X		1.6-96 nT (P2P)
ERT	X			1.8-12.9 (dρ_RMS%)
FDEM		X		0.002-8.3 (P2P%)
TDEM		X		11.5-68 (P2P%)

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

"CHI" MODELS

- Considered variable parameters:
 - DOB (Depth Of Burial)
 - \circ R_{ch} (chimney radius)
 - o σ_i , σ_m , σ_o , σ_b (shell and background el.conductivity, dry/saturated)
 - I (magnetic inclination)

	min	max
DOB	100 (m)	500 (m)
R_c	11 (m)	45 (m)
σ_i (e.g.)	8e-4 (S/m)	5e-3 (S/m)
I	-90°	90°

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

"CHI" MODEL RESULTS

- GRV: not useful (perhaps the chimney only)
- MAG: useful (alt. halo signature also retrievable)
- ERT: useful to detect the chimney; short arrays
- FDEM: useful with high-freq, long Tx-Rx separation and saturated conditions
- TDEM: detectable for big R_{ch} ; better small loops and saturated rocks

	Suitable		Not suitable	Anomaly range
GRV			X	0.1-0.6 mGal (P2P)
MAG	X			30-227 nT (P2P)
ERT		x		4.5-19.5 (dρ_RMS %)
FDEM		X		0.02-8.6 (P2P%)
TDEM		X		11.5-81.5 (P2P%)

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

"VOI" MODELS

- Considered variable parameters:
 - DOB (Depth Of Burial)
 - o R_{ch} (chimney radius)
 - o σ_i , σ_m , σ_o , σ_b (shell/background el.conductivity, dry/saturated)
 - I (magnetic inclination)
 - d (casing diameter)
 - Presence/absence of casing

	min	max
DOB	150 (m)	500 (m)
R_{ch}	13 (m)	45 (m)
σ_i (e.g.)	8e-4 (S/m)	5e-3 (S/m)
1	-90°	90°
d	3 m	4 m

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

"VOI" MODEL RESULTS

- GRV: generally not useful (only the chimney identified)
- MAG: high with casing or shallow alteration zone
- ERT: suitable; small arrays preferable
- FDEM: suitable with casing if one coil lies over it (unlikely)
- TDEM: without casing suitable with shallow alt. zone; casing dominates the response; small loops preferable

	Suitable		Not suitable	Anomaly range
GRV		X		0.05-2 mGal (P2P)
MAG		X		4-417 nT (P2P, no cas.)
ERT	X			1.7-8.7 (dρ_RMS%)
FDEM		X		0.01-4.7 (P2P%)
TDEM		X		9.1-38.7 (P2P%)

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

"VOI" MODEL RESULTS -INFLUENCE OF CASING

 Examples of MAG and TDEM anomalies: high increase of the geophysical anomaly with metallic casing

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

"SLP" MODELS

- Considered variable parameters:
 - $\circ \alpha$ (slope)
 - $\circ \sigma_i, \sigma_m, \sigma_o, \sigma_b$ (shell and background el.conductivity, dry/saturated)
 - I (magnetic inclination)

	min	max
α	10°	30°
σ_i (e.g.)	8e-4 (S/m)	5e-3 (S/m)
1	-90°	90°

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

04.5-276

"SLP" MODEL RESULTS

- GRV: not suitable (low anomaly)
- MAG: tunnel always retrievable up to 20° for midmag.latitudes
- ERT: part.suitable up to 15° (doors not retrievable)
- FDEM: better medium-large separation, dry
- TDEM: useful in all cases; small/big loops equivalent

	Suitable		Not suitable	Anomaly range
GRV			X	0.1-0.35 mGal (P2P)
MAG	X			12-27 nT (P2P)
ERT		X		0.6-6.7 (dρ_RMS%)
FDEM		Х		2.3-60 (P2P %)
TDEM	X			34-44000 (P2P%)

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

"SLP" MODEL RESULTS - INFLUENCE OF THE SLOPE (MAG CASE)

- MAG anomaly vs slope:
 - Overall significant up to 20° slope
 - Always high at the tunnel entrance

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

O4.5-276

CONCLUSIONS

- A comprehensive geophysical simulation study of synthetic Underground Nuclear Explosion scenarios has been carried out
- The computations have been done by means of ad-hoc developed Python codes, which can also be used on-site
- We built a portfolio of 870 geophysical anomalies, stemming from 358 UNE models and multiple acquisition settings
- The portfolio is essential for:
 - OSI geophysical method choice/survey design and on-site acquisition strategies
 - Interpretation of the collected data
 - Surrogate inspectors training
 - CTBTO equipment list development

Rizzello, D., Koivisto, E.A.L., Gaya Pique, L., Armadillo, E.

04.5-276

THANK YOU!