
Evaluating AI Code Assistants for Enhanced Software Development in 

CTBTO: A Modular Approach

Evangelos Dellis

Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), 

P.O. Box 1200, 1400 Vienna, Austria

DISCLAIMER: The views expressed on this e-poster are those of the author and do not necessarily reflect the view of the CTBTO.

AI code assistants have emerged as a promising solution, offering capabilities such as

autocomplete, code refactoring and context-aware suggestions. However, evaluating the

effectiveness of these AI-powered tools in the CTBTO context is crucial to ensure their

reliability, security, and compliance with organizational standards.

In this work we present the results of the evaluation of open-source AI code assistants in

CTBTO, focusing on a modular approach that incorporates multiple components,

including autocomplete models, chat models, local and remote context engines, filtering

mechanisms, and training engines.

P4.3-576



SWE-bench: A benchmark used to evaluate the ability of large language models (LLMs) to solve real-world software

engineering problems

o Given a codebase and an issue, a language model is tasked with generating a patch that resolves the issue.

o Results are verifiable!

Benchmarks: SWE-bench, Codeforces, HumanEval, MBPP,

LiveBench Coding, LiveCodeBench & SciCode

Evaluating AI Code Assistants for Enhanced Software Development in 

CTBTO: A Modular Approach

An AI coding Assistant/Agent is a tool that uses a Large

Language Model (LLM) that is finetuned for coding

tasks and for “tool-use”, more particularly:

AI Coding Assistants (higher predictability – lower

agency):

o Allow developers to work faster by automating

repetitive or time-consuming tasks

o Solve simple, pre-defined tasks but struggle with

novel or open-ended problems

o Uses an IDE where the developer is driving the

coding

AI Coding Agents (higher agency – lower

predictability):

o Agents are typically implemented as an LLM

performing actions (via tool-calling) based on

environmental feedback in a loop.

o Handle complex, multi-step problem-solving tasks,

often across dynamic environments.

Evangelos Dellis

DISCLAIMER:

The views expressed on this e-poster are those of the author and do not

necessarily reflect the view of the CTBTO.

Introduction and defitinions Benchmarks and Leaderboards

P4.3-576



A SWE-Agent is an asynchronous software

engineering agent that you can delegate tasks to and

receive a fully tested PR ready to be reviewed and

merged in main branch. Examples include Devin,

Codex, Jules, OpenHands (open-source)

o It is a cloud-based software engineering agent that is

running on public or private cloud (sandboxed) →

spins-up new docker containers in the cloud!

o The task can be anything from fixing a bug, review

code, do refactors, and implement new functionalities

in response to user feedback.

o Integration with Github/Gitlab: ability to clone the repo

and the ability to push a pull requestCLI-Based Agents are agents you interact with through

your terminal.

o They wrap LLM reasoning into a command-line

interface, helping you navigate codebases, answer

questions, or modify code—all from within your local

dev environment.

Examples: Claude Code, Codex CLI (open-source),

Qwen Code and Aider (open-source)

Both Aider and Codex CLI can work with local docs,

codebase from GitHub/Gitlab, can consult

documentation, connect to Jira, etc.

Evaluating AI Code Assistants for Enhanced Software Development in 

CTBTO: A Modular Approach

An AI IDE integrates code-generating LLMs directly into

your existing development environment (like VS Code or

JetBrains), helping you write, refactor, and understand

code.

o Designed to assist rather than replace developers:

code suggestions, completion, inline explanations,

and debugging hints.

o Runs locally or via plugin, with real-time code

context and seamless integration into your

workflow.

We use vLLM for inference which is suitable for

multiuser environments. We installed the SOTA open-

source coding LLM for copilots (codestral:22b) locally in

our GPU infrastructure.

Evangelos Dellis

DISCLAIMER:

The views expressed on this e-poster are those of the author and do not

necessarily reflect the view of the CTBTO.

AI IDE Coding Assistants SWE-Agent or Teammate Agents

P4.3-576

CLI-based Agents



AI IDEs: We evaluated VS Code Continue vs Cline:

Both support autocomplete, code refactor, access to

documents, connect to DBs, connect to GitHub/Gitlab,

Jira, etc. → augments developer’s work (copilot)

CLI-based Agents: Both tools can work with local docs,

Gitlab codebases, can consult documentation, connect

to Jira, etc → good Linux CLI skills are crucial

Teammate Agents (SWE-Agent): SWE-Agents are

experimental coding agents that helps you fix bugs and

build new features. They integrate with GitHub/Gitlab,

understands your codebase, and works asynchronously.

We evaluated OpenHands with different LLMs and for

different scenarios→ excels in greenfield development!

You specify a prompt, and the agent goes to work in its own environment and after a few minutes, the agent gives

you back a diff. The environment may contain:

o Set package versions (like python 3.12)

o Environment variables and Secrets

o Setup scripts (pip install -r requirements.txt)

You can execute tasks/prompts in either ask mode or code mode:

a) Ask mode: the agent clones a read-only version of your repo, booting faster and giving you follow-up tasks 

→ Ask mode for brainstorming, audits, or architecture questions. 

b) Code mode: the agent creates a full-fledged environment that the agent can run and test against. → Code 

mode for when you want automated refactors, tests, or fixes applied

Development Workflow:

1. Connect to GitHub/Gitlab repo and select a branch

2. Submit a new task (implement a new feature, fix a bug, do refactor, review code, etc)

3. A new Docker container based upon a base image is created. The repo is cloned at the desired branch and run

any setup scripts you have from the specified working directory (install dependencies, compile, required software

to run unit tests, etc).

4. The agent then runs terminal commands in a loop. It writes code, runs tests, and attempts to check its work.

The agent attempts to honor any specified lint or test commands you've defined in an AGENTS.md file. The agent

does not have access to any special tools outside of the terminal or CLI tools you provide.

5. When the agent completes your task, it presents a diff or a set of follow-up tasks. You can choose to open a PR

or respond with follow-up comments to ask for more changes→ a senior developer will review/accept the PR.

Evaluating AI Code Assistants for Enhanced Software Development in 

CTBTO: A Modular Approach

Evangelos Dellis

DISCLAIMER:

The views expressed on this e-poster are those of the author and do not

necessarily reflect the view of the CTBTO.

A guide on how to use an autonomous SWE-Agent Conclusions

P4.3-576


	Cover Slide
	Slide 1

	Presentation Slides
	Slide 2
	Slide 3
	Slide 4


