
Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

Comprehensive Nuclear-Test-Ban Treaty Organization

(CTBTO), P.O. Box 1200, 1400 Vienna, Austria

Presentation Date: 10 September 2025

A framework for developing LLM applications

DISCLAIMER:

The views expressed in this presentation are

those of the author and do not necessarily

reflect the view of the CTBTO.

O4.3-565

Contents

➢ What is a Large Language Model (LLM)?

➢ Building blocks of LLM applications

➢ A framework for developing LLM applications

➢ Capabilities of the framework: RAG, Function Calling, Code Interpreter

➢ Use Cases: How CTBTO can benefit from LLM applications?

➢ Exploring future directions

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

What is a Large Language Model (LLM)?

➢ A large language model (LLM) is a type of AI (generative AI) that can process and produce natural language text

➢ LLMs are built on machine learning: specifically, a type of neural network called a transformer model

❑ Training dataset: massive amount of text data such as books, articles, and web pages (~ 15 trillion tokens)

❑ Hardware: Trained in a GPU cluster (~ tens of thousands of H100 equivalent GPUs)

❑ Post training: Fine-tuned for specific purpose, i.e. instruct using RLHF

➢ Key Characteristics of LLMs:

❑ Parameters: Contains billions of parameters (weights) that are fixed during pre-training/fine-tuning

❑ Context Window: Number of tokens (1 token = 3/4 words) that the LLM can process in one pass (2K - 2M)

➢ In our framework we consider off-the-shelf open-source Large language Models (LLMs):

❑ Examples: Llama, Qwen, GPT-OSS, Mistral, Falcon, Gemma, Phi, Yi, DeepSeek, etc.

❑ Deployed locally in our dedicated GPU infrastructure

❑ Multimodal (text, code, vision, image, speech) & reasoning LLMs up to ~ 400 billion parameters

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

Building blocks of LLM applications

➢ The Large Language Model: A pretrained off-the-shelf open-source LLM or a fine-tuned LLM adapted for specialized use

cases

➢ InContext Learning: The capability to learn new knowledge just form the context

❑ Context: Instructions (acting role), extra context, output format/style/tone, goals/rules for the task and the query

❑ Techniques: Zero-Shot/Few-Shots (provide a few examples to drive the result)

➢ Retrieval Augmented Generation (RAG): Incorporate external information to “ground” the LLM

❑ Vector Store: A database to store embeddings, i.e. transformation of “chunks” of documents

❑ Similarity Search - kNN: Retrieval of the k most relevant “chunks”

❑ APIs/Plugins: Retrieve information from google or internal API, i.e. Jira ticket information

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

➢ Context Engineering: Programmatically assembling the context for an LLM by combining

a) External knowledge retrieved from documents (RAG) or APIs/Plugins with

b) InContext Learning techniques and then feeding this constructed context into the LLM

Types of LLM applications

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

Type Functionality Use Cases - Spectrum of Capabilities

AI Chatbots Dialog-based flow - Applications designed to

simulate conversations with human users through

text

When integrated with contextual data, they can answer domain specific

questions and are typically embedded in websites (QnA).

AI Assistants More advanced than chatbots – Augments work.

Can have multiple modalities (text, voice and

image)

Can connect with various data sources and systems (like DMS/CMS, Git,

DBs, APIs, etc). AI Assistants automate routine tasks, by executing actions

(using tools).

AI Copilots Auto-completes as you write – Decision support in

scientific or coding applications

Specialized fine-tuned models that are embedded in scientific or coding

software applications (copilot) to assist with specific tasks, benefiting from

extensive user data.

AI Agents Highly autonomous systems capable of complex

decision-making and learning from their

environment.

LLM-based agents can cooperate with other agents, operate in the

background and waiting for events to occur or tasks to be completed.

Examples: Deep Research or SWE-Agent

Framework for building LLM applications

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

LLM Application Stack deployed on NVIDIA DGX-1 Servers

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

Application Description

Ollama/vLLM Open-source LLM Inference Engine for running LLMs locally (text LLMs, code LLMs, vision LLMs, embedders)

Qdrant/Neo4j Open-source Vector & Graph Databases to store embeddings, entities, relationships and their metadata for effective

Knowledge Search

Flowise Open-source Low-Code LLM Orchestration Tool (based on LangChain and LangGraph)

Open WebUI Open-source AI User Interface with RAG, Code Interpreter, Function Calling, Web Browsing, RBAC, Multilingual

Langfuse Open-source Observability Tool for Inspection of traces, metrics, evaluations and prompt management

LLaMa Factory/Easy

Dataset

Open-source Fine-tuning and Training Framework for LLMs supporting multiple models

Data Pipelines Pipelines for parsing, chunking, extracting, injecting, embedding and automatically populate the Vector DB

LiteLLM An OpenAI-compatible Gateway that allows you to interact with multiple LLM providers through a unified API

LLM Playground Standalone custom applications like PDF to Markdown, Whisper (Speech to Text), LightRAG, GPT Researcher, Paper

Reviewer, Plagiarism Detector, etc.

Capabilities of the framework

➢ Specialized fine-tuned models that have been adapted to our needs

➢ System prompt customization to tune the Assistant’s personality and capabilities

❑ Provide set of instructions and guidelines to steer the behavior of the model

❑ Adjust parameters of the model like temperature and context length

❑ Leverage In-Context Learning (ICL) to learn new skills

➢ Use of predefined tools & grounding techniques (RAG):

❑ Custom-made tools via function calling (integrate Confluence, Jira, Gitlab, ECS, DOTS, Elasticsearch, etc)

❑ Specific knowledge from Confluence/SharePoint or IDC pdf documents (IDC Database Schema, IDC

Operational Manual, IDC processing of SHI Data, etc)

❑ Code Interpreter enables the assistant to write and run code in a sandboxed environment (containerized)

➢ All of the above hardcoded in a custom modelfile that can be assigned to a person/team

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

How Retrieval Augmented Generation (RAG) works

➢ Retrieval Augmented Generation (RAG) is the process of retrieving relevant contextual information

from a data source and passing that information to a large language model alongside the user’s

prompt.

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

What is Function Calling, Code Interpreter & Fine-tuning

➢ Function calling (tool use) allows you to connect an

LLM to external tools and systems, i.e. an AI assistant

needs to fetch the latest weather information.

➢ Code Interpreter allows an AI Assistants to write and

run Python code in a sandboxed execution environment.

➢ Fine-tuning is a technique used to adapt pre-trained

Large Language Models (LLMs) for specific tasks using

custom datasets. This process modifies the parameters

of a pre-trained LLM to create a task-specific model.

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

Use Case: A general-purpose chat interface

➢ It is deployed locally in our dedicated GPU infrastructure (NVIDIA Servers)

➢ It is based on popular open-source technologies and tools:

❑ vLLM (inference), Open WebUI (chat UI), Qdrant (vector DB), Langfuse

(observability)

➢ Capabilities of the Chat UI:

❑ Draft email replies, summarize a document, create templates for projects

❑ Brainstorm ideas and collaborate on a project (using workspaces)

❑ Prototype an application (using artifacts): code snippets, diagrams, or website

designs

❑ Extensible using custom pipelines (RAG), functions (pipes/filters) and tools

❑ Create custom models with tools/knowledge and assign to specific

person/team

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

Use Case: A platform for developing LLM applications

➢ A platform for building, evaluating, training, monitoring and

configuring LLM assistants and agents

➢ Flowise/LangChain (orchestration), Langfuse (evals), Easy

Dataset & Label Studio (datasets/data labeling), Llama Factory

(fine-tuning)

➢ Capabilities of the platform:

❑ Helps with dataset creation, data labeling and annotation

from private CTBTO data

❑ Streamlines the fine-tuning, deployment, and management

of custom models and adapters

❑ Manage LLM API access and enforce budgets, guardrails,

logging and cost tracking
❑ More information: P3.5-569 (e-poster)

➢ Who is it for? Targeted to developers/admins

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

➢ A robust Graph-based Retrieval Augmented Generation (RAG) solution:

❑ Use local open-source LLMs to extract entities/relationships

as well as popular embedders to calculate embeddings from documents.

❑ Based on LightRAG (which is a hybrid GraphRAG solution)

❑ Runs on our dedicated GPU infrastructure.

❑ Use Neo4j for storing the Knowledge Graph

❑ AI Assistants utilizing GraphRAG:

❑ OPS and Station Operator Assistants: Knowledge from IRS (i.e. solved tickets), Build pipelines

(pdf2markdown) and use semantic search to query the IRS Knowledge, Tools via function calling to

retrieve/update IRS ticket information

❑ Other PTS Assistants: WGB Assistant: Knowledge from ECS (i.e. WGB documents) imported to Vector DB,

Use semantic search to query the collection, and many more: PMTool Assistant, SWP Assistant, MDA

Assistant, etc

Use Case: Purpose-built AI Assistants

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

Use Case: Deep Research on CTBTO documents

➢ Deep Research solution (Report Generation):
❑ Is based on GPT Researcher which is an autonomous agent (using LangGraph)

designed to automate and enhance online (or local documents) research

❑ It leverages large language models (LLMs) to perform comprehensive research on

a wide range of topics, producing detailed, factual, and unbiased research reports

with citations

❑ It runs on our dedicated GPU infrastructure and uses open-source models as the

FAST, SMART or STRATEGIC LLM (and open-source embedders)

➢ Capabilities of Deep Research:
❑ Generate detailed research reports using web and/or local CTBTO documents

❑ Aggregate over 20 sources for objective conclusions

❑ Maintains memory and context throughout research

❑ Export reports to PDF, Word, and other format

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

Use Case: AI Coding Assistants & Agents

➢ An AI coding Assistant/Agent is a tool that uses a LLM that is finetuned for coding tasks and for “tool-use”:

❑ Both the tool and the model are specialized for creating working software

❑ It can carry out software development tasks, such as fixing bugs, on a human developer's behalf

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

➢ AI Coding Assistants (higher predictability – lower agency):
❑ Allow developers to work faster by automating repetitive or time-consuming tasks

❑ Solve simple, pre-defined tasks but struggle with novel or open-ended problems

❑ Uses an IDE where the developer is driving the coding

➢ AI Coding Agents (higher agency – lower predictability):
❑ Agents are autonomous and typically implemented as an LLM performing actions

(via tool-calling) based on environmental feedback in a loop.

❑ Handle complex, multi-step problem-solving tasks, often across dynamic

environments.

What is SWE-bench?

➢ A benchmark used to evaluate the ability of large language models (LLMs) to solve real-world

software engineering problems

❑ Given a codebase and an issue, a LLM is tasked with generating a patch that resolves the problem.

❑ Generating patches (PRs) for GitHub issues in popular open-source Python repositories.

❑ It consists of a dataset of 2,294 problems and their fixes, allowing researchers to assess how well LLMs can

understand and resolve code-related issues in a way that mirrors how human developers work.

❑ Results are verifiable!

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

How we use the AI coding tools (P4.3-576)

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

➢ AI Coding Assistants: VS Code with Continue and Cline

❑ AI Plugin using local/hosted code LLMs (e.g. qwen3-coder:30b, codestral:22b) over entire IDC codebase

❑ We use vLLM for inference which is suitable for multiuser environments

❑ Builds a map of the entire git repo, works well in larger codebases, designed to assist users

➢ AI Coding Agents: Codex CLI, Aider and OpenHands

❑ Use open-source agentic frameworks to automatically resolve issue and submit MR

❑ Automation of software engineering tasks, assign simple issues to the Agent through Gitlab

❑ Human still in control: has to manually review and approve the merge request

➢ Specific Use Cases:

❑ Explain code: create automatic documentation of complex codebases

❑ Code completion: Autocomplete code as soon as typing a few words

❑ Write new code: Augment the software engineer to automate code writing

❑ Write comments: Comprehensive documentation across the full codebase

❑ Write test cases: Help automate software testing by writing new test cases

Exploring future directions

➢ Exploring Fine-tuning frameworks in CTBTO (Easy Dataset & LLaMa Factory):

❑ Knowledge Assistant: Fine-tune open-source LLMs on specific CTBTO domain knowledge/dataset

❑ text-to-SQL Assistant: Fine-tune open-source LLMs on IDC database schema

❑ SHI/RN Copilots: Fine-tuning a Vision Transformer on CTBTO labeled data:

o Develop datasets, data preparation steps, and algorithms → build a new finetuned model

o Using LoRA to adapt pre-trained open-source LLMs to PTS specific tasks like SHI or RN

➢ Explore reasoning models that are good for coding and create on-prem SWE-agents:

❑ Running on our private cloud (sandboxed) → spins-up new docker containers (based upon a base image)

❑ The agent goes to work in its own environment and after a few minutes gives you back a working PR

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

Questions?

A framework for developing LLM applications

Evangelos Dellis, Cahya Wirawan, Janero Del Rosario

DISCLAIMER:

The views expressed in this presentation are those of the author

and do not necessarily reflect the view of the CTBTO.

O4.3-565

	Cover Slide
	Slide 1

	Presentation Slides
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

