04.2-114

PROPOSING SUSTAINABLE POWER SYSTEMS FOR ENHANCED INTERNATIONAL MONITORING SYSTEMS OPERATIONS

Study Case in Indonesia

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

Indonesian Agency for Meteorological, Climatological and Geophysics

Presentation Date: 12 September 2025

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

INTRODUCTION

(Background)

04.2-114

CTBTO Relevance

- Continuous station uptime is critical for treaty verification
- Self-sustaining power systems reduce risk of outages
- Remote monitoring + predictive maintenance ensure data quality and resilience

IMS under CTBTO

- Global network for nuclear-test-ban verification
- Indonesia: >500 seismic stations (BMKG), 6 auxiliary IMS stations

Operational Challenges

- Wide archipelagic geography → high logistics and travel costs
- Limited number of technicians → stretched across hundreds of stations
- Fiscal constraints (Presidential Instructions /INPRES No.1/2025) → fewer site visits allowed

Maintenance Responsibility

- All seismic & IMS stations are maintained in-house by BMKG technicians
- No outsourcing → full reliance on BMKG staff capacity

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

04.2-114

INTRODUCTION (Current Systems)

Seismological Stations	Power Supply			Seismic			Communication
	Solar Panel	Battery	Solar Charge Controller	Digitizer	Seismometer	Accelerometer	Modem
MLJI	Solar panels 370 WP (3 units)	Haze 12V 70Ah (4 units)	Growatt SC4860	Centaur	Trillium 120Q	Titan	Teltonika RUT-955
PMCI	Solar panels 260 WP (3 units)	LiFePO4 24V 100Ah (6 units)	Growatt SC4860	Centaur	Trillium Horizon	Titan	Teltonika RUT-955 & Cygnus 210
TRT	State electricity company	LiFePO4 12V 100Ah (2 units)	Growatt SC4860	NDAS 8426	R-sensor CME-6211	-	Teltonika RUT-955
ARMI	Solar panels 260 WP (3 units)	LiFePO4 24V 100Ah (6 units)	Growatt SC4860	Minimus+	Guralp 3T 120	Fortis	Teltonika RUT-955

Key Insight

Bottleneck lies in telemetry & analytics X

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

04.2-114

INTRODUCTION (Identified Challanges)

X No MQTT telemetry

Power parameters (voltage, current, SoC, SoH) **locked in vendor dashboards**

No integration with **BMKG central servers** for power systems

X Reactive maintenance

Failures detected **only after downtime**

No predictive tools for SoH/RUL forecasting

X High costs

Archipelagic geography → expensive logistics

Limited BMKG technicians stretched across >500 stations

X Policy pressure

Presidential Instructions /INPRES No.1/2025

mandates strict expenditure efficiency

Fewer site visits allowed → higher risk of undetected failures

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

04.2-114

RESEARCH OBJECTIVES

Good Maintenance for Sustainability

Enable Predictive Maintenance

- ➢Apply BiLSTM & ensemble AI models for SOH and RUL
- ➤Transition from reactive → proactive station management

Enhance Sustainability (*Triple Bottom Line*)

- ➤ Economic: lower OPEX, fewer site visits, align with Presidential Instructions (INPRES) No.1/2025
- ➤ Environmental: maximize battery lifecycle, reduce e-waste, renewable energi
- ➤ Social: ensure continuous CTBT verification & tsunami early warning reliability

Strategic Impact

- Strengthen IMS resilience in Indonesia
- ➢Provide scalable model for global IMS operations

Standardize Telemetry

- ➤ Adopt MQTT QoS2
 → secure, exactly-once data delivery
- ➤ Replace siloed vendor dashboards with

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

04.2-114

LITERATURE REVIEW

Power Supply in	BMKG field tests: PV + LiFePO ₄ + MPPT feasible in harsh environments				
Remote Monitoring	Similar AWS/IoT deployments show same challenges → data often siloed (Ioannou, 2021)				
MQTT in IoT Applications	Proven in environmental monitoring & cloud integration 【Alves, 2024】				
Applications	htweight, secure, scalable → ideal for IMS				
	QoS2 ensures exactly-once delivery, critical for treaty verification				
Predictive	Reactive / scheduled maintenance insufficient in remote sites 【Afif & Meganendra, 2023】				
Maintenance	BiLSTM & CNN-BiLSTM with attention → accurate SoH & RUL forecasts 【Guo, 2022; Zhang, 2022】				
	Ensemble deep learning → robust across variable conditions 【Ganaie, 2022; Lin, 2023】; Hybrid CNN–BiLSTM–Attention models proven accurate for battery SOH & RUL estimation (Zhu et al., 2022)				
Sustainability	Economic: Predictive = lower OPEX, fewer field trips				
(Triple Bottom Line)	Environmental: Extend battery life, reduce e-waste 【Fairuzen, 2021】				
	Social: Continuous IMS uptime supports CTBT verification + tsunami warning 【Arora, 2024】				

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

04.2-114

METHODS (Proposed System Architecture)

Hardware Layer

- Solar PV arrays sized for site load
- Growatt SC4860 MPPT → efficient charging + basic monitoring
- LiFePO₄ batteries → stable, long-cycle energy storage

Connectivity Layer

- Teltonika RUT-955 Gateway → cellular/satellite backhaul
- Publishes telemetry via MQTT (QoS2 + TLS)

Data & Server Layer

- IMS Central Server + Time-Series Database
- Stores multi-site telemetry for trend & fault analysis

Analytics Layer

- Predictive Maintenance: BiLSTM + ensemble models
- Continuous estimation of SoH & RUL

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

04.2-114

METHODS (Predictive Maintenance Analytics)

Inputs

• Voltage, Current, Temperature, State of Charge (SoC), Cycle Count

Models

- BiLSTM captures long-term sequential dependencies in battery data
- CNN-BiLSTM-Attention ensembles combine local feature extraction (CNN), temporal context (BiLSTM), and focus on critical patterns (Attention)
- Proven in lithium-ion battery SoH & RUL prediction (Zhu et al., 2022)

Outputs

- Continuous estimation of State of Health (SoH)
- Prediction of Remaining Useful Life (RUL) until 80% SoH threshold (IEEE standard)

Alerts

- Predictive results published via **MQTT topics** (ims/<site>/alerts)
- Provides early warnings → enables proactive interventions before failures

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

04.2-114

RESULTS AND DISCUSSION (Field Feasibility)

Implementation Sites (Seismic Stations)

• MLJI (Malang, East Java); PMCI (Mamuju, West Sulawesi); TRT (Pasuruan, East Java) and ARMI (Aru Islands, Maluku)

Status at Seismic Sites

- Deployed: PV + Growatt SC4860 MPPT + LiFePO₄ + Teltonika gateway
- Limitation: No MQTT telemetry, no predictive maintenance yet
- Further development constrained by Presidential Instructions (INPRES) No.1/2025 (budget efficiency)
- Plan: pilot implementation at BMKG Geophysics sites in the near term

Experience from AWS (Automatic Weather Stations)

- MQTT + InfluxDB successfully deployed for >2 years
- Proven scalability and stability for real-time telemetry
- Next step: integrate **predictive maintenance models** for power systems

Research-backed confidence

- Numerous studies (e.g., Zhu et al., 2022; Guo et al., 2022) show high accuracy and robustness
 of CNN-BiLSTM-Attention models for SoH and RUL prediction
- Strong evidence base → high confidence that sustainable and reliable IMS power systems
 can be achieved

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

04.2-114

RESULTS AND DISCUSSION (Triple Bottom Line Impacts)

Economic 💰

- Reduce costly site visits across Indonesia's archipelago
- Optimize battery replacement cycles → avoid premature replacements
- Aligns with Presidential Instructions (INPRES) No.1/2025 on expenditure efficiency

Environmental

- Transition to renewable solar energy reduces fossil fuel reliance
- Predictive replacement **minimizes electronic waste** (LiFePO₄ batteries used to full lifespan)
- Lower carbon footprint from reduced logistics and transport

Social 🥦

- Ensures continuous IMS uptime → supports CTBT verification globally
- Reliable seismic stations strengthen tsunami early warning systems for local communities
- Builds resilience and public safety through sustainable operations

8 SEPTEMBER ORLING BAY 9 TO 12 SEPTEMBER AT HOSBURG PALACE, VIENNA & ONLINE

PROPOSING SUSTAINABLE POWER SYSTEMS FOR ENHANCED INTERNATIONAL MONITORING SYSTEMS OPERATIONS

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

04.2-114

CONCLUSION AND FUTURE WORK

- ► IMS in Indonesia: **proven hardware** (PV + Growatt SC4860 + LiFePO₄) but **limited by vendor dashboards** → no MQTT telemetry, no predictive maintenance
- Proposed: MQTT QoS2 + BiLSTM/ensemble predictive analytics → shift from reactive → proactive & sustainable
- Confidence backed by:
 - ☐ BMKG AWS experience (2+ years using MQTT + InfluxDB, next step predictive models)
 - □Global research (CNN-BiLSTM-Attention, Zhu 2022; Guo 2022) → high accuracy in SoH & RUL estimation
- ➤ Triple Bottom Line impacts: lower costs (aligned with Presidential Instructions / INPRES No.1/2025), reduced e-waste & carbon footprint, stronger CTBT verification & tsunami early warning

Future Work

- ➤ Pilot deployment at **BMKG Geophysics sites** to validate MQTT + predictive maintenance
- Scale-up integration into **IMS auxiliary stations** for CTBTO verification network
- Extend predictive models with **uncertainty-aware AI** for decision support
- ➤ Build a **replicable framework** → scalable across global IMS operations

Hendri Satria WD, Dewi Tamara Qothrunada, Evi Nilasari

04.2-114

