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Supervised Learning

We utilized supervised learning, i.e., machine learning where the network is trained on labelled
data
-To do this we used a randomly-selected 80% of the data from 5 years for 29 stations
(> 200k spectra)
-Verification done with the remaining 20% of the data
-Needed to make all spectra have 8192 channels
-The goal of the training is to minimize the difference between actual and predicted values

We trained neural networks to:
- Predict the location from a spectrum: network produces a location on the globe and
minimizes the haversine distance from the prediction to the real location
- Predict the station from a spectrum: station classification was done by cross entropy, i.e.,
measuring the difference between two probability distributions
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3 Neural Network Types Tried
Multilayer Perceptron Convolutional Neural Network )

Y P Multilayer Perceptron — fully connected
neurons, i.e., information from every channel
connected to others immediately
Convolutional Neural Network — less

1 | . ' computational; good at learning features
“'-'-'--'“ S TT T TR TTTIT T through filter optimization
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3 Neural Network Types Tried
Transformer
Transformer — newer machine learning approach;
can be trained on data with different numbers of
channels since the data is grouped
o | | Results were about the same, no matter which
; & neural network type used
Transformer - Encoder e
XXX (XXX >95% of location predictions within 150 km
90 --09 of true location (station)
N-Classes
97% station classification performance
>z
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Localization Results
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Mispredicted Spectra: Electronic vs. Nuclides

- Electronic issues led to higher
entropy  predictions low
prediction confidence

- Nuclide differences lead to low
entropy predictions — confident
predictions of wrong station
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Closer Look at Mispredictions

Comparison of average mispredicted spectrum (grey) vs. predicted spectrum (orange) for stations
with more than 10 mispredictions as another station
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Operational Anomaly Detection

Automated Triage :
« Data quality
« Data corruption
» Detector issues and changes

Predicted Station Average

10*

el

9

Station expectations
* Nuclides
« Overall activity

Mispredicted spectra versus
actual station average

averag
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& i i |
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Actual station average

Connections to ATM and climatic regions could
provide further context

Classification success implies the ability to
compare sets of stations or readings for trend
analysis or event analysis

Automated identification of spectra more indicative of —

=7

another station is followed by human triage PNNL
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Machine Learning Operations

» Supervised learning (SL) is ideal for
= Automation of “easy tasks”
= Metrics
= Effect detection

» Operationalization of SL requires
= Alignment with mission metrics
= Dimension reduction
= |nput monitoring and alerting
= Automated retraining

 Risks

= |nput drift, e.g. change in expected
nuclides change, detectors change

= Often, you must start from scratch

Alternatives

» Unsupervised Learning (UL)

« Dimensions reduced and combined into a
representation with appropriate invariances

« Two sample tests or other statistical techniques
performed on dimension reduced space
« Machine learning guided signature discovery

« Techniques like the previously presented
identify features which can be used without ML
in the future
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Conclusions

 Particulate spectra reported to the
IDC may have anomalous or
corrupted data from

* Electronic and maintenance state
of the detector

* Reporting issues

e Other

» Assuring the authenticity and quality
of data is critical to the IMS
performance

 Particulate spectra contain
information about location and time of
measurement

Supervised neural networks can predict
originating station by evaluating raw
spectra

Prediction performance is 97% by station
classification, 95% by location regression

Mispredictions often indicative of
anomalous spectra

High performance implies a high
information content in spectra and
possibilities for later, more advanced
analyses
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