

Infrasonic Source Location Using The Neighbourhood Algorithm

D. Brown

Retired. (Formerly: Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO))

••••••• AND MAIN RESULTS

The Neighbourhood Algorithm is a grid search method that optimizes a user-supplied objective function over a computational domain using Voronoi cell tesselation. The algorithm is a method for solving geophysical inverse problems with the additional benefit of not requiring the estimation of travel-time derivative information (Sambridge, 1999). In this application a misfit function for infrasound detections, defined in terms of observed and predicted values of travel time and backazimuth, is minimised using the neighbourhood algorithm with a hypocentral source location hypothesised. The method is applied to several noteworthy infrasound events

Infrasonic Source Location Using The Neighbourhood Algorithm

Introduction

Signal detection and characterization strategies are used to form an observation vector $d_j = [T_j, \theta_j, s_j]$ for a set of 1...j...N SHI stations that have recorded signals from a common source .

For an hypothesized initial source location X^0 the source location is typically refined through an iterative procedure $X^0 \to X^1 \to X^2 \to \cdots \to X^k$ where at each iteration a correction vector Δx^k is specified such that:

$$x^{k+1} = x^k + \Delta x^k$$
 where $\Delta d_i^k = \sum_{j=1}^N \left(\frac{\partial d_i}{\partial x_j} \right)_{x=x^0} \Delta x^k$ or $p = Gq$

Singular Value Decomposition is used to solve for \mathbf{q} where a *generalized* inverse \mathfrak{S} is determined such that $\mathbf{q} = \mathfrak{S}\mathfrak{p}$ where $\mathfrak{S} = V\Sigma^{-1}U^T$ for unitary matrices V and U, and diagonal matrix Σ . The main issues with this method are:

- it is generally over-determined, and the eigenvalues contained in Σ are often manipulated to guarantee inversion
- certain smootheness propeties on the travel-time curves are assumed in order to determine the derivative

The Neighbourhood Algorithm method -Sambridge: 1999-

The Neighbourhood algorithm is a iterative grid-search method that uses Voronoi Tesselation to search a sample space.

Voronoi Tessellation is a method of tiling a space with

- · a random chosen set of seed points
- a tile consisting of all points closer to their seed than any other seed
- the value of an objective function can be determined at each seed point

D.Brown (retired. Formerly CTBTO)

An iterative procedure can be developed that re-seeds the tile containing the seed with the minimum function value generating a new set of tiles, e.g. for the objective function $\sin(x-0.5) - \sin(y-0.5)$

For infrasound source location the following objective

 $\begin{array}{l} \text{(misfit) function} \\ \text{is used:} \\ M\left(\vartheta,\varphi\right) = \sum\limits_{i=1}^{N} \left[\frac{W_T \left(\frac{T_i^{(\text{obs})} - T_i^{(\text{pred})}}{\sigma_i^{(T)}} \right)^{1.0} + W_\theta \left(\frac{\theta_i^{(\text{obs})} - \theta_i^{(\text{pred})}}{\sigma_i^{(\theta)}} \right)^{4.0}}{W_T + W_\theta} \right]$

-where T is time, θ is azimuth, (obs) the observed detected value, (pred) the predicated value based on a forward modelling estimate, σ the uncertainties and W the weightings **processing**

- detections provided by Hough Transform detector (Brown 2008)
- analyst determined dominant stratospheric return
- constant velocity assumed: 295 m/s
- no conflict resolution employed in source location
- · deltim: 30 sec delaz 3 deg
- azimuthal weighting: 95% time weighting: 5%
- adapts work of Brown (2007), Brown et al. (2013),

Australia: explosion of mining truck carrying ANFO

GT0 location: (-27.92298,123.47106) @ exact time unknown

NA location: (-28.2313,123.4297) @ 24-Oct-2022 03:38:05

Misfit: 34.3 km no uncertainty analysis

Beirut: fertilizer storage silo

GT0 location: (33.90039,35.51834) @ 4-Aug-2020 15:08:18

P3.5-611

NA location: (33.6898,35.4428) @ 4-Aug-2020 15:04:41 no uncertainty analysis

Misfit: 24.4 km 227 sec no uncertainty analysis

Ukraine: ammunition depot explosion

Brown, D. et al, SnT 2013

GT0 location: (49.45165,26.876136) @ 13-May-2023 03:10:14 (seismic)

NA location: (49.5390,26.8086) @ 13-May-2023 03:11:54

Misfit: 10.9 km 100 sec no uncertainty analysis

Conclusions

- The Neighbourhood Algorithm provides a useful tool to do source location at IMS operational distances
- the inclusion of meteorological info to back out the azimuthal deviation is required
- · needs to be supplemented by an error analysis
- need to sort conflict resolution for auto processing

References

Sambridge, M., Geophys. J Int., **138**, 1999. NA code used with permission of Prof. Sambridge Brown, D. et al., J. Geoph. Res., **113**, 2008 Brown. D. **ITW** 2007