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We present a Convolutional Recurrent Neural Network emulating parabolic equation-
based solver to predict infrasound transmission loss in near real-time. The predictions 
are associated with model and data-related uncertainties, and can be interpreted using 
AI explainability tools. Our method can be used for operational assessment of 
infrasound event detection capability at a global scale.
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State-of-the-art modelling tools (finite-difference, 
spectral element, normal modes or parabolic equation 
methods; de Groot-Hedlin et al., 2011; Brissaud et al., 
2016; Waxler et al., 2021; Martire et al., 2022):
● Accurate 

High computational costs. 

Le Pichon et al., 2012’s semi-empirical expression: 
● Fast 

The complexity of infrasound propagation is 
oversimplified.

Brissaud et al., 2023‘s Convolutional Neural Network:
● Fast and acccurate 

Propagation range of 1,000 km limiting when 
performing global-scale Tls simulations

Uses interpolated atmospheric models leading to 
incomplete representation of the propagation 
medium.

Deep learning surrogate model for near real-time estimation of ground-
level infrasound transmission loss (TL) 

International Monitoring System (IMS) stations provide 
a worldwide coverage of infrasound sources (Christie & 
Campus, 2009). 

IMS designed to detect atmospheric nuclear explosions 
with a minimum yield of 1 kiloton of TNT equivalent 
(Marty et al., 2019) to monitor compliance with the 
Comprehensive Nuclear-Test-Ban Treaty.

To achieve this, new advanced processing methods 
(e.g., for wavefront parameters estimation or source 
location) leveraging deep learning algorithms are being 
developed (Bishop et al., 2022; Albert & Linville, 2020).
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Motivations Challenges

IMS infrasound detection 
capability map (0.2 Hz)

Accurate modelling of infrasound TL is essential to:

● Interpret IMS stations measurements

● Assess IMS detection thresholds and optimize its 
design to monitor sources worldwide (Green et al., 
2010, Le Pichon et al., 2012, Vergoz et al., SnT 
2025 Session O4.1)

● Help infer atmospheric properties (e.g., winds or 
temperatures) at altitudes where measurements 
are scarce (Assink et al., 2012; Smets & Evers, 
2014; Vera Rodriguez et al., 2020; Blixtet al., 2019; 
Amezcua et al., 2024; Letournel et al., 2024). 



Inputs: 2D realistic atmospheric slices
● Horizontal wind speed + temperature 

extracted using the Whole Atmosphere 
Community Climate Model (Gettelman 
et al., 2019)

● Range-dependent small-scale 
disturbances (Gardner et al., 1993)

Supervised Convolutional Recurrent Neural Network (Cameijo et al., 2025) 
● Fast and accurate
● Capture spatially + range-dependent features embedded in inputs
● Propagation range up to 4,000 km
● Evaluated on unseen atmospheric conditions, seasons, & frequencies
● Epistemic + data uncertainties (Gawlikowski et al., 2023) 
● Interpretability tools available.

Deep learning surrogate model for near real-time estimation of ground-
level infrasound transmission loss (TL)  
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Outputs: 1D ground-level TLs
● Computed using atmospheric 

absorpion coefficients (Sutherland & 
Bass, 2004) and parabolic equation-
based solver (Waxler et al., 2021)

● 5 frequencies: 0.1, 0.2, 0.4, 0.8, 1.6 Hz



Deep learning surrogate model for near real-time estimation of ground-
level infrasound transmission loss (TL) 

Earth sampled with 162 points on 
January and August 2021. 

Atmospheric slices collected along 8 
directions and 2 azimuths + perturbed 
by 10 small-scale disturbance fields. 

Simulations at 5 frequencies.

=> 77,760  scenarios.
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Training Testing (global scale)

6,000 unseen atmospheric conditions (≠ 
locations)

● ~ 7% average error
● Good estimation including in case of 

abrupt change in propagation regime
● Robustness in the presence/absence 

of stratospheric wave guides

High-frequency variability not fully 
captured

Generalization (regional scale)

Unseen atmsopheric conditions (≠ 
locations, dates, & frequencies)

● ~ 9% error around the Hunga Tonga 
volcano (eruption on January 2022; 
Vergoz et al., 2022)

● ~ 10% error around Beirut (explosion 
on August 2020; Pigler et al., 2021)

● ~ 11% error around the Hukkakero 
military site  (explosions every 
summer; Gibbons et al., 2018)

Perspectives

● Create a more complete dataset 
(more sampling points & dates)

● Develop more advanced algorithms 
(Transformer; Vaswani et al., 2017)

● Use explainability methods to 
interpret predictions (ablation tests, 
gradient-based visualization tools; 
Selvaraju et al., 2016)

● Enfore causality when predicting 
TLs, such as in physical modeling 
tools

Extraction points, January 2021
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