O3.3-604

Analysis of Seismic Ambient Noise for Resonance Seismometry OSI Technique – the FISP Method

Miriam Kristekova, Jozef Kristek, Peter Moczo

Comenius University Bratislava, Slovakia Slovak Academy of Sciences, Slovakia

Presentation Date: 11 September 2025

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Outline

Motivation

FISP – methodology

FISP – applications

Conclusions

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

CTBTO on-site inspection team seeks cavities hundreds of meters underground

limited time for inspection
limited number of seismic stations
limited possibilities to deploy a large and dense array

it is useful to have a robust method
utilizing seismic ambient noise
applicable to data from
single station (or a few stations) measurements

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Structural Models for the Vertical Emplacement

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Structural Models for the Vertical Emplacement

cavity without chimney (for plastic rock)

free surface

cavity with chimney filled with rubble + apical void

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Result of Analysis of Synthetics

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

The Finite-Interval Spectral Power Method (FISP)

instead of problematic identification
of individual weak peaks
and
calculation of the corresponding spectral characteristics,
the FISP is based on evaluation
of signal energy (spectral power)
within a finite-interval of frequencies

Kristekova et al. 2021. Geophys. J. Int., 945-960

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

The Finite-Interval Spectral Power Method (FISP)

we proposed to evaluate spectral power representing the entire reasonably selected frequency interval $[F_{min}, F_{max}]$

$$FISP_{Z} = \int_{F_{\min}}^{F_{\max}} \left| \tilde{X}^{Z} (f) \right|^{2} df$$

$$FISP_{H} = \int_{F_{\text{min}}}^{F_{\text{max}}} \left| \tilde{X}^{E}(f) \right| \left| \tilde{X}^{N}(f) \right| df$$

$$\frac{FISP_H}{FISP_Z}$$

 $\left| \tilde{X}^{C}\left(f \right) \right|^{2}$ is a smoothed power spectral density (PSD) of one component of noise

The Finite-Interval Spectral Power Method (FISP)

we proposed to evaluate spectral power representing the entire reasonably selected frequency interval $[F_{min}, F_{max}]$

? how to estimate power spectral density (PSD) in case of non-unimodal distribution?

$$PSD(f) =$$
 the maximum of kernel density estimate

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

The Finite-Interval Spectral Power Method (FISP)

we proposed to evaluate spectral power representing the entire reasonably selected frequency interval $[F_{min}, F_{max}]$

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

The Finite-Interval Spectral Power Method (FISP)

we proposed to evaluate spectral power representing the entire reasonably selected frequency interval $[F_{min}, F_{max}]$

the coefficient of variation

$$CV(f) = \sqrt{\exp[\sigma^2(f)] - 1}$$

quantifies the differences between the segments regardless of the value of PSD

$$SNR(f) = -10\log_{10}CV(f)$$

is the **signal-to-noise ratio** in decibels

the larger signal-to-noise ratio,
the smaller differences
between the segments
and therefore
more reliable measurement

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

The Finite-Interval Spectral Power Method (FISP)

we assume

a set of measurement points at the free surface above a suspected cavity

and

Sufficiently long
3-component records of noise at all measurement points

September 15, 2019
September 15, 2

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Real-site application of FISP

Great Cavern, Hungary

roughly oval shape horizontal span: 28 - 30 m height: 25 - 28 m

depth (ceiling): ~70 m

Tiny Tot, NNSS, Nevada

cavity from yield 20kT

horizontal span: ???

height: ???

depth: ~111 m

Rotmoos, Austria

karst area

horizontal span: ???

height: ???

depth: 60 - 450 m

Channel Tunnel, UK

two tubes 30m appart horizontal span: 46 m height: 7.6 m

depth: ~90 m

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Real-site application of FISP – Great Cavern, Hungary

3-component records of noise at 50 measurement points (interstation distance ~50 m)

maps showing FISP_{H/Z} computed for frequency interval 5.5 - 30 Hz

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Real-site application of FISP – Tiny Tot, NNSS, Nevada

3-component records of noise from SPE-5 and SPE-6

Real-site application of FISP – Tiny Tot, NNSS, Nevada

3-component records of noise from SPE-5 and SPE-6

data from many receivers unusable either due to malfunction or due to strong interference at most frequencies

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Real-site application of FISP – Tiny Tot, NNSS, Nevada

FISP_{H/Z} computed for frequency interval 17 - 24 Hz for 4 variations of FISP parameters

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Real-site application of FISP – Rotmoos, Austria

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Real-site application of FISP – Rotmoos, Austria

See: P3.3-556 Results of 2022 and 2023 OSI Field Tests for Seismic Techniques

Real-site application of FISP – Rotmoos, Austria

See: P3.3-556 Results of 2022 and 2023 OSI Field Tests for Seismic Techniques

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Real-site application of FISP – Rotmoos, Austria

See: P3.3-556 Results of 2022 and 2023 OSI Field Tests for Seismic Techniques

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Real-site application of FISP – Channel Tunnel, UK

used data from Profile 1
across the Channel Tunnel
excavated in chalk marl at 90 m depth

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Real-site application of FISP – Channel Tunnel, UK

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Conclusions

The application of FISP at various locations
has shown that
the method has the potential
to identify and locate underground cavities.

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Conclusions

Based on our experience in processing data we have the following recommendations for organizing future noise measurements for resonance seismometry:

- measuring instruments must be sufficiently sensitive
 to be able to record even the weakest level of seismic noise
 in the range of at least several hundred counts,
- if two or more measuring instruments are to be used,
 it is necessary to ensure and test that the seismic noise recorded
 by all instruments at the same place is the same,
- seismic noise should be measured at all locations in the most similar conditions possible,

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Conclusions

- measurements should be disturbed as little as possible by technogenic activities (including staff),
- after the initial measurement in the basic grid of measuring points and after the first analysis of FISP anomalies it is useful to perform additional measurements in denser grid around the places with anomalous values of FISP to verify and/or ensure the reliability of obtained of FISP anomaly,
- when selecting suitable frequency interval for FISP calculation,
 avoid frequencies containing an energy from technogenic sources,
- subject the obtained results to sensitivity analysis
 in relation to different time windows selection
 and different time segment selection.

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Many thanks

to the CTBTO team of experts who performed the measurements at all sites, and to the members of the CTBTO Expert Group for the fruitful discussions.

Miriam Kristekova, Jozef Kristek, Peter Moczo

O3.3-604

Thank you!

See also: P3.3-556 Results of 2022 and 2023 OSI Field Tests for Seismic Techniques

