

Richard Britton, Ashley Davies, Nikolaus Hermanspahn

CTBTO

••••••• AND MAIN RESULTS

The Comprehensive Nuclear Test-Ban Treaty (CTBT) International Monitoring System (IMS) is designed to provide a network of 80 Radionuclide detection systems, strategically positioned around the globe to detect particulate radionuclide emissions from nuclear explosions.

The implementation of ultra-sensitive monitoring systems to the IMS, incorporating gamma coincidence measurements into routine operations, provides both redundancy of the Treaty measurement and the potential to detect radionuclides at a threshold 100x lower than the current systems.

Progress towards the implementation, and benefits of the work, are discussed.

Richard Britton, Ashley Davies, Nikolaus Hermanspahn, CTBTO

P3.2-662

Detecting UGTs on the IMS

IMS particulate (P) monitors typically achieve $\mu Bq.m^{-3}$ detection limits, which is ~1000 times more sensitive than Noble Gas (NG) monitors. The IMS has automated and manual stations, each providing 24/7 monitoring within an 80 station network design. Currently there are 73 P & 26 NG stations certified.

Gamma coincidence systems are widely used in both IMS laboratories and in the field. Applying this technology to current P monitoring stations can improve the sensitivity by up to 100x, pushing the MDCs down into the nBq.m⁻³ regime.

Such an advance brings numerous benefits, including the sensitivity to measure a UGT with a prompt vent beyond what is possible using the NG network, despite the fact that the major particulate signature is a ¹⁴⁰Xe (Noble Gas) decay product.

Station mode MDA [mBq]	¹⁴⁰ Ba	⁹⁹ Mo	¹⁴⁰ La	131 I
IMS station - RN67	142	281	66	46
VIP00 system - station mode - singles	141	439	66	38
VIP00 system - station mode - dual	99	310	46	27
VIP00 system - station mode - $\gamma - \gamma$	84	44	7	49
VIP00 system - station mode - $\gamma - \gamma$	84	44	7	49

Laboratory mode MDA [mBq]	¹⁴⁰ Ba	⁹⁹ Mo	¹⁴⁰ La	¹³¹ I
IMS laboratory - highest	79	5657	62	50
IMS laboratory - lowest	19	170	9	17
IMS laboratory - average	43	1636	26	27
VIP00 system - lab mode - singles	60	3648	23	29
VIP00 system - lab mode - dual	42	2561	16	21
VIP00 system - lab mode - $\gamma - \gamma$	11	491	9	67

Above – MDAs for a range of nuclei, demonstrating the significant improvements in sensitivity that are possible with a dual detector system.

CURRENT IMPLEMENTATION AT VIP00

Clockwise from the left:

- Dual system at VIP00
- MCAs used and tested (LYNX 1&2)
- Snow White sampler on the roof of the VIC
- RSSI2 station software, with easy switching between single, dual and synchronised operations
- RSSI2 spectra diagnostics for real-time

Modified station configuration with dual detector setup (two electrically cooled HPGe, with LYNX2 MCAs:

- Improved reliability (one detector failure does not compromise treaty measurement)
- Simplified setup using COTS components
- Additional Measurement capability (Pulse Height, List-mode, Synchronized List mode)
- Improved Data Availability
- Fully integrated in the latest version of RSSI
- Data compatible with F&P Rev8
- Improved analysis potential for NDC's
- Best use of spare detector, which should be kept cold and operational to prolong its useful life

DISCLAIMER The views expressed on this poster are those of the author/s and do not necessarily reflect the view of the CTBTO

Richard Britton, Ashley Davies, Nikolaus Hermanspahn, CTBTO

P3.2-662

γ - γ COINCIDENCE MEASUREMENTS – EXAMPLE SCENARIOS

Eliminating false positives

- false positives create significant additional work for both IDC and NDC analysts
- dual systems provide a big step forward coincidence systems a giant leap

Improved results, better verification

- post Fukushima, IMS detections were often seen with a potential excess of ¹³⁴Cs
- bias mostly seen at low ¹³⁴Cs concentrations, typically due to poor peak fitting and low statistics
- with dual detector systems, measured values fall much closer to the theoretical decay corrected
 134Cs/137Cs ratio
- [1] Based on the ¹³⁷Cs/¹³⁴Cs expected from fuel compositions in Fukushima-Daiichi nuclear power plant. JAEA-Data/Code 2012-018, Japan Atomic Nishihara, K., Iwamoto, H. and Suyama, K. (2012)

Spiked sample to mimic a typical measurement that could occur from a UGT

- prompt gas release of 0.025% ¹⁴⁰Xe from a 1 kT device
- dilution factor of 10¹⁷, to mimic typical transport across ~1000 km
- 140Xe promptly decays into 140Ba/La, providing a clear signature and nuclear clock with which to calculate fission zero time
- this scenario would go undetected on the current IMS
- using a dual detector system, you could measure it and get a zerotime
- using a dual system in coincidence, you could measure a signal 10x smaller (less release, or smaller UGT)

Mode	Energy	Signal (MDA), mBq	Zero time	Conclusion
Current IMS	¹⁴⁰ Ba (537keV)	MDA (190-610)	Not Determined	No Detection
IMS (RN67)	¹⁴⁰ Ba (537keV)	216 (142)	Not Determined	Detection, no zero time
Dual System (Sum)	¹⁴⁰ Ba (537keV) ¹⁴⁰ La (487keV)	153 (99) 66 (46)	18/3/2020 17:01	Detection and zero time
Dual System (coincidence)	¹⁴⁰ Ba (305keV gate 162keV) ¹⁴⁰ La (487keV gate 328keV)	156 (84) 67 (7)	18/3/2020 17:33	Detection and zero time

CTBTO PREPARATORY COMMISSION

Richard Britton, Ashley Davies, Nikolaus Hermanspahn, CTBTO

P3.2-662

γ - γ COINCIDENCE MEASUREMENTS - REFERENCES AND LINKS

A.V. Davies, R. Britton
Improving the sensitivity and reliability of radionuclide measurements at remote IMS stations

JER, Volume 216, 2020, 106187, https://doi.org/10.1016/j.jenvrad.2020.106187

R. Britton, A.V. Davies
Limits of detection — Enhancing
identification of anthropogenic
radionuclides
NIMA, Volume 947, 2019, 162818,
https://doi.org/10.1016/j.nima.2019.162818

R. Britton, A.V. Davies

Coincidence-based High-resolution Analysis
for On-site-inspection (CHAOS)

NIMA, Volume 940, 2019, 215-222,
https://doi.org/10.1016/j.nima.2019.06.029

