O3.2-267

Enhancements of FRL08: metrological connection between simulation/experiment and utilization of Al tools for coincidence matrix analysis

Authors: H.-D. Lenouvel¹, H. Paradis¹

Co-authors: A. de Vismes Ott¹, P. Gross¹, S. Topin^{1,2}

¹ CEA, DAM, DIF, F-91297 Arpajon, France

•••••••••••••

09 september 2025

² CNAM, Analyse Chimique et Bioanalyse, EPN-7, 292 rue Saint Martin, 75003 Paris, France

O3.2-267

From context to modeling: systems and methods

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Radionuclide technology: context and stakes

- ☐ Resources deployed by the CEA as part of the CTBT framework:
 - Stations: SPALAX and SPALAX-NG [1]
 - > Certified Laboratory: FRL08 (Gamma³) [2]
 - National Data Center (NDC)
- ☐ Research for radionuclide measurements:
 - ➤ Coincidence measurements (with the SPALAX-NG and Gamma³)
 - ➤ Data analysis : Al and spectral unmixing methods (P3.2-263)

Fig 1. SPALAX-NG

Polymer layer

Silicon wafer
Thickness: 500 µm

Signals readout

Carbon window

Fig 2. Gamma³ (left) & PIPSBox (right)

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Model creation with MCNP

- Modeling from:
 - Technical drawings provided by the manufacturer
 - Radiographies of detectors

Fig 3. Radiography of a HPGe detector (BEGe5030P)

- Standard sources:
 - ➤ Energy range covered: [22 2505 keV]
 - Geometries:
 - compressed or uncompressed particle filters (diameter of 110 mm)
 - volumetric geometries (from 20 mL to 500 mL)

Fig 4. Display of a cross-sectional view of a detector modeled under MCNP.

Fig 5. Common sources geometry used by the laboratory

O3.2-267

Validation of models

■ Detection efficiency:

- $\varepsilon = (\text{number of particles detected})/(\text{number of particles emitted})$
- ☐ Validation of the digital model:

1° Modeling of detectors

2° Optimization: Mean ratio = $\left(\frac{\varepsilon_{EXP}}{\varepsilon_{MCNP}}\right) \approx 1$

Fig 6. Modeling of the configuration (ATHOS + ARAMIS) & PIPSBox

- ☐ Parameters to optimize:
 - > Thickness of materials (dead layers, carbon window...)
 - > Position of the source relative to the crystal detector
 - Crystal size

$$A = N_{net} * \frac{1}{\varepsilon} * \frac{1}{I} * \frac{1}{T} * \prod_{i} C_{i}$$

3° Validation of models

Fig 7. Detection efficiency ratio (EXP/MCNP) versus energy

→ Model validation enables simulation for calculating new detection efficiencies

O3.2-267

Quantification through coincidence measurements

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Validation of the method on a gaseous sample

- Measurement:
 - > (ATHOS+ARAMIS)&PIPSBox
 - > Duration: 57600 s

☐ Efficiency calculation:

> MCNP-CP

Tab 1. β/γ detection efficiencies for the 4 radioxenon isotopes

RXe	β/γ coincidence spectrometry
^{131m} Xe	0.16 ± 0.02
¹³³ Xe	0.20 ± 0.02
^{133m} Xe	0.147 ± 0.023
¹³⁵ Xe	0.176 ± 0.016

■ Analysis:

Tab 2. Comparison between reference activities and measured activities

RXe	A_{ref} (Bq)	$U(A_{ref})$ k =2 (Bq)	A _{meas} (Bq)	<i>U</i> (A _{meas}) k=2 (Bq)	Deviation (%)	E_n score
^{131m} Xe	94	10	84	13	-10.6	-0.60
¹³³ Xe	204	23	205	19	0.8	0.06
^{133m} Xe	10.2	1.1	9.1	1.4	-11.3	-0.63
¹³⁵ Xe	217	22	226	21	4.0	0.29

Fig 8. β/γ matrix obtained from the measurement

- \rightarrow Validation for γ -ray spectrometry and for β/γ coincidence spectrometry. Very good agreement with reference values.
- → H.-D. Lenouvel, et al., Measurement of radioxenon isotopes for nuclear explosion detection using coincident β/γ detector calibrated by simulation, ARI. DOI: ARI 111886

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Benefits of using γ/γ coincidence detection (example with ¹³⁴Cs)

☐ Identification of ¹³⁴Cs using coincidences:

Fig 9. Decay scheme of ¹³⁴Cs

Fig 10. Particulate filter placed between two HPGe detectors with expected coincidence matrix signatures

- Measurement of a fresh fission products sample from CTBTO:
 - \triangleright Classic γ -ray spectrometry: complex spectra (~300 peaks)

➤ Coincidence spectrometry: characteristic signatures

SNR: Signal-to-Noise Ratio

Fig 11. Classic γ -ray with zoom around 605 keV

Fig 12. Coincidence matrix with a zoom on the ¹³⁴Cs

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Validation of the method on a IAEA sample

- ☐ Standard IAEA swipe sample
- Measurement:
 - > ATHOS&ARAMIS
 - Duration: 316800 s
- ☐ Efficiency calculation:
 - > MCNP-CP

Fig 13. γ/γ matrix obtained from the measurement with a zoom on the ¹³⁴Cs

■ Analysis:

Tab 3. Comparison between reference activities and measured activities

_						
Radionuclide	A_{ref} (Bq)	$U(A_{ref})$ k=2 (Bq)	A _{meas} (Bq)	$U(A_{meas})$ k=2 (Bq)	Deviation (%)	E_n score
^{110m} Ag	7.51	0.09	7.36	0.70	-2.0	-0.21
¹³⁹ Ce	7.51	0.09	6.7	1.1	-11.0	-0.78
¹³⁴ Cs	7.56	0.07	7.75	0.79	2.5	0.24
¹⁵² Eu	7.55	0.07	8.0	0.8	5.7	0.55
²³⁵ U	0.0747	0.0009	0.062	0.027	-16.2	-0.46

- \rightarrow Detecting radionuclides (134Cs) with poor visibility in γ -ray spectrometry
- \rightarrow Validation for γ -ray spectrometry and for γ/γ coincidence spectrometry. Very good agreement with reference values.

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Qualitative Al model

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Database & CNN architecture

- Memory-intensive 2D spectrum → spectra size reduced by ~300x
- ☐ Composition of simulated samples: ~130 000 spectra
 - > ~3%: spectral signature of each radionuclide of the relevant list
 - > ~18%: fission products from ²³⁵U (High Enriched Uranium) with fast neutrons (14 MeV)
 - > ~79%: random distributions

- → Ensuring both physical accuracy and sufficient representation of each radionuclide
- → Setting thresholds for each radionuclide to determine their presence

Evaluation of the spectral CNN

□ Determine the model's ability to discriminate between positive and negative classes :

Fig 15. Distribution of positives/negatives as a function of the raw output

☐ Precision-Recall (PR) curve:

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

F1-score (harmonic mean of the precision and recall):

$$F1 = \frac{2*TP}{2*TP + FP + FN} \to 1$$

Fig 16. PR curve for ¹³⁶Cs

- For this model:
- Precision: 0.78
- Recall: 0.84
- F1-score: 0.79

- → High detection accuracy for specific classes
- → Exclusion of certain classes treated as noise
- → Determine the best threshold

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Results from a standard source

- ☐ Radionuclides in the source:
 - ➤ Detectable by the model: ⁵⁷Co, ⁶⁰Co, ⁸⁸Y, and ¹³⁹Ce

70

- Undetectable by the model: 54Mn, 65Zn, 109Cd, 113Sn, 137Cs, and 241Am
- CNN results:

Tab 4. Model results on a 10-element standard source

Detected Not detected

Radionuclide	A (Bq)	Threshold (%)	Predicted probability of presence (%)	Radionuclide	A (Bq)	Threshold (%)	Predicted probability of presence (%)
⁶⁰ Co	185.5	69	85	⁵⁷ Co	105.2	71	24
¹³⁹ Ce	919.5	73	86				

57Co : only visible at low energies

2794

- → Most of the elements detectable by the model are correctly classified
- → No false positives were observed

81

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Detected

Not detected

Results from the PTE 2023 (3M geometry)

☐ CNN results:

Tab 5. Model results on a 25-element sample

Radionuclide	Importance	A (Bq)	Threshold (%)	Predicted probability of presence (%)
¹²⁵ Sb	major	2.8	74	78
¹³⁶ Cs	major	21.2	66	82
⁹⁵ Nb	major	26.2	62	85
¹⁴⁷ Nd	major	35.1	70	74
⁹⁵ Zr	major	63.7	69	96
¹⁰³ Ru	major	81.0	70	98
¹⁴⁰ Ba	major	93.8	70	93
¹⁴⁰ La	major	108.0	71	93
¹⁰⁶ Ru	/	1	68	82
¹²⁴ Sb	major	2.1	68	39
¹⁵⁶ Eu	minor	3.6	71	43
¹³² Te	minor	7.0	71	16
¹²⁷ Sb	minor	10.2	72	41
¹²⁶ Sb	major	17.5	65	35
131	major	27.6	69	63
¹³⁴ Cs	/	1	66	19

Fig 17. Coincidence matrix with a zoom on the ¹⁰⁶Ru and ¹³⁴Cs

- → Most of the elements detectable by the model are correctly classified
- → Most undetected elements are due to low activity/emission levels or insignificant coincidence signatures

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Conclusion & Perspectives

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Conclusion

- Metrological connection with Monte Carlo simulation :
 - Model optimization and validation with standard sources
 - Determination of detection efficiencies :
 - Validation with a radioxenon gaseous sample (β/γ coincidence)
 - Validation with IAEA swipe intercomparison exercise (γ/γ coincidence)
- Implementation of a first AI model for γ/γ matrix analysis :
 - Feature detection with a CNN
 - Qualitative multi-label classification

RXe	A _{ref} (Bq)	U(A _{ref}) k=2 (Bq)	A _{meas} (Bq)	<i>U</i> (<i>A</i> _{meas})	E _n score
^{131m} Xe	94	10	84	13	-0.60
¹³³ Xe	204	23	205	19	0.06
^{133m} Xe	10.2	1.1	9.1	1.4	-0.63
¹³⁵ Xe	217	22	226	21	0.29

Perspectives

- Optimization of the AI tool:
 - Refine the dataset, improve the network structure and the loss function, for radionuclides whose detection is challenging
 - Include uncertainties to the predicted probabilities of presence
- \square Explore the use of spectral unmixing method for γ/γ coincidence measurements
 - Adapt the tools developed by **C.-P. Mano (P3.2-263)** to the context of HPGe applications

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Annexes

Gamma³: configuration for the measurement of gaseous samples

- ☐ Configuration:
 - \triangleright 2 HPGe: detection of photons (X/γ)
 - \triangleright 2 PIPS: detection of electrons (e^-/β)
 - ➤ The PIPSBoxTM is placed between ATHOS and ARAMIS detectors

Fig 12. Energy spectrum of the

Fig 10. (ATHOS+ARAMIS)&PIPSBox configuration

Fig 13. β particle emission energy spectrum

Fig 11. Depiction of the shape of the **fingerprints**

O3.2-267

O3.2-267

Benefit of using β/γ coincidence detection

☐ The benefit of using coincidences in the X-ray region:

Fig 14. Separation of the signatures of metastable radioxenon isotopes

Fig 15. γ -ray spectrum with a zoom on the X-ray region

→ Characteristic signatures of radionuclide (very low background)

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

- \square Calculation of decision thresholds (D_T) and detection limits (D_I) on a blank measurement:
 - ISO standard 11929
 - Comparison between the classical and coincidence spectrometry
- Particulate radionuclides:

Radionuclide	γ spectrometry : D _T / D _L (mBq)	γ/γ spectrometry : D_T/D_L (mBq)
^{108m} Ag	2.03 / 4.2	0.39 / 2.9
^{110m} Ag	2.44 / 5.0	3.67 / 26.4
⁶⁰ Co	1.81 / 3.8	0.60 / 4.3
¹²⁵ Sb	5.31 / 10.9	5.39 / 19.0
¹³⁴ Cs	1.75 / 3.6	0.71 / 3.2

- → Regarding certain radionuclides :
 - $P * \epsilon \text{ very low } \rightarrow LD_{\gamma\gamma} > LD_{\gamma}$
- → $SD_{\gamma\gamma}$ often highly favorable → better sample characterization

Tab 6. Comparison of D_T/D₁ between γ and γ/γ spectrometry for particulate measurements

60 C o	
¹²⁵ Sb	
¹³⁴ Cs	

■ Noble gas sample:

Tab 7. Comparison of D_T/D_1 between γ and β/γ spectrometry for noble gas measurements

Radionuclide	γ spectrometry : D _L (mBq)	eta/γ spectrometry : D _L (mBq)
^{131m} Xe	73	0.3
¹³³ Xe	3.3	1.0
^{133m} Xe	33	0.2
¹³⁵ Xe	18.3	4.3

 $\rightarrow \beta/\gamma$ spectrometry highly favorable for metastable radioxenon isotopes

H.-D. Lenouvel, H. Paradis, A. de Vismes Ott, P. Gross, S. Topin

O3.2-267

Training of the spectral CNN

- □ Activation function : sigmoid
 - → raw outputs → probabilities of presence
 - multi-labels classification
- ☐ Loss function : Custom FocalLoss [5] with BCEWithLogit

$$\rightarrow$$
 $FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} * BCEWithLogits$

- $\rightarrow \alpha \rightarrow$ balances positive vs. negative classes
- $\rightarrow \gamma \rightarrow$ focuses on hard vs. easy examples
- \Box Optimizer : Adam (step : 10^{-5})

Here:

- Epochs : 15
- i Batch: 128 spectra
- $\alpha = 0.9 / \gamma = 2.5$

→ Strong class imbalance + avoiding underfitting of difficult classes

