O3.1-761

Exploring the Potential of a Barometer as a Transfer Standard for Infrasound Calibration

Dominique RODRIGUES, Frédéric BOINEAU

Laboratoire National de Métrologie et d'Essais (LNE)

9th September 2025

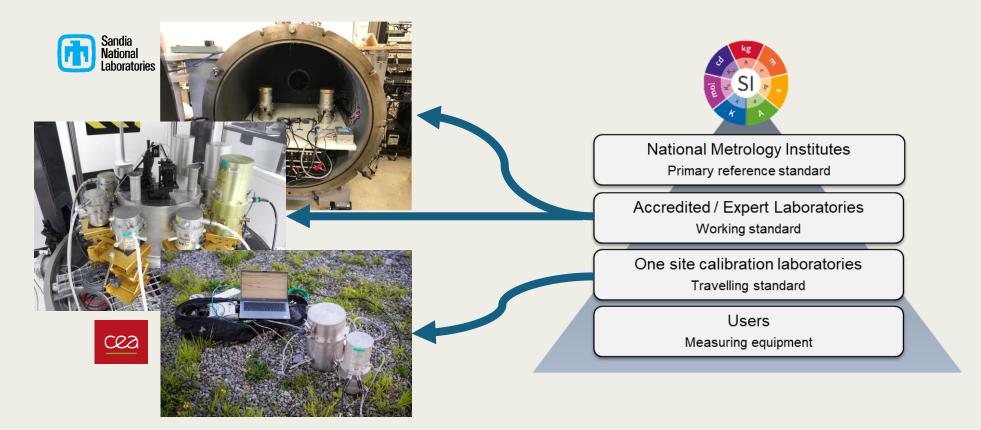
Dominique RODRIGUES, Frédéric BOINEAU

O3.1-761

Motivation & Context

Quality assurance for IMS measurement systems

- CTBTO prepares to implement the Nuclear-Test-Ban Treaty.
- The International Monitoring System (IMS) is a key part of the verification regime.
- Ensuring data quality is essential:
 - Operational Manual (CTBT/WGB/TL-11,17/17/REV.7).
 - Quality assurance infrastructure for IMS infrasound measurements.
- Requires accurate and regularly calibrated instruments.

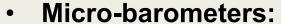


Dominique RODRIGUES, Frédéric BOINEAU

O3.1-761

Establishing measurement traceability for IMS infrasound measurements

Need for reliable working/transfer standards


Dominique RODRIGUES, Frédéric BOINEAU

O3.1-761

Current Transfer Standards in Acoustics

Microphones:

- ☑ Well-established, robust, easy to deploy, traceable to primary standards
- X Limited below 0.1 Hz

- Cover low-frequency range, robust, traceable to primary standards
- X Heavy and bulky, difficult to deploy

Barometers:

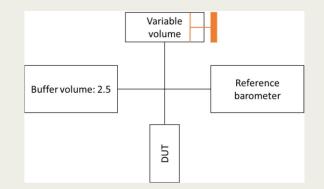
- Robust, stable, easy to deploy
- Can bridge static and dynamic calibration domains

Dominique RODRIGUES, Frédéric BOINEAU

O3.1-761

Objectives & Device Under Test

- Investigate whether a barometer can serve as an infrasound transfer standard
 - Ability to bridge static and dynamic calibration domains
 - Compare static vs dynamic calibration methods
- The Device Under Test
 - Keller PAA33X static pressure sensor
 - Piezoresistive technology
 - Operating range: 800 1200 hPa
 - Analog interface ranged to 950–1050 hPa over 0–10 V output
 - Nominal sensitivity: -60 dB ref. 1V/Pa
 - Expected flat response up to ~20 Hz

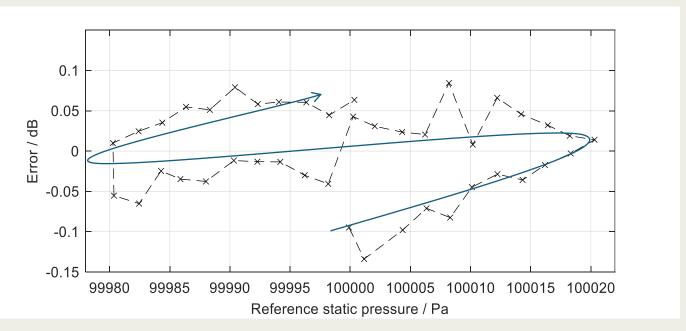


Dominique RODRIGUES, Frédéric BOINEAU

O3.1-761

Calibration Methods Overview

- Two calibration paths (same sensor):
 - Static pressure calibration reference barometer & buffer volume
 - Dynamic calibration laser pistonphone
- Two LNE laboratories involved:
 - Static Pressure Lab
 - Acoustics & Vibration Lab
- Comparison basis:
 - Cross-compare static vs dynamic results under the same pressure range (100000 ± 20 Pa).



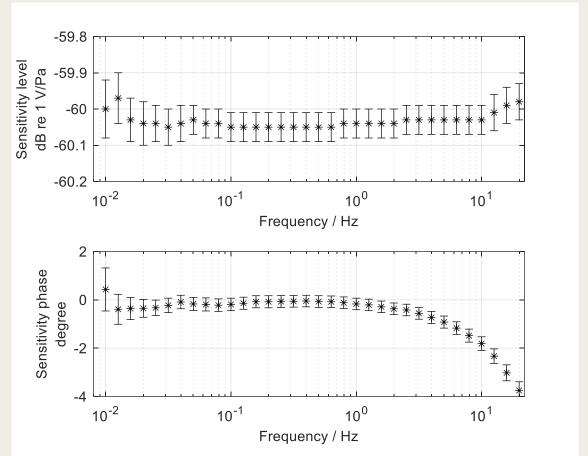
Dominique RODRIGUES, Frédéric BOINEAU

O3.1-761

Static Pressure Calibration – Results

- Calibration cycle (2 Pa steps)
 - Simulates a sinusoidal pattern in DC
 - Sequence: $100000 \rightarrow 100020 \rightarrow 99980 \rightarrow 100000 \text{ Pa}$
- Linear regression results:
 - Sensitivity M_p : -60.034 dB re 1V/Pa
 - Expanded uncertainty (k=2): **0.056 dB**

Deviation of the measured pressure from the expected pressure



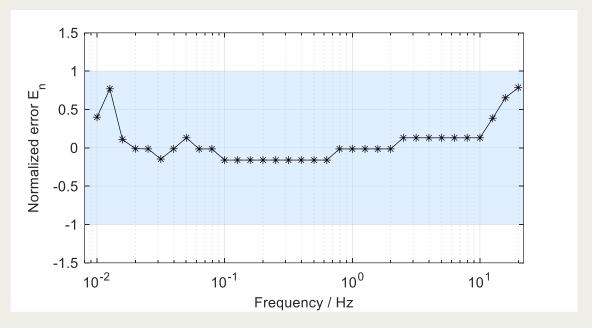
Dominique RODRIGUES, Frédéric BOINEAU

O3.1-761

Dynamic Calibration – Results

- Method
 - Laser pistonphone (IEC TR 61094-10:2022)
 - Frequency range: 10 mHz 20 Hz
- Results
 - Sensitivity M_p : ~ -60.04 dB re 1 V/Pa across range
 - Flat magnitude response (within uncertainty)
 - Phase tends to 0° at low frequencies
 - Expanded uncertainty (k=2):
 - From 0.04 dB to 0.08 dB for magnitude
 - From **0.24** degree to **0.89** degree for phase

Dominique RODRIGUES, Frédéric BOINEAU

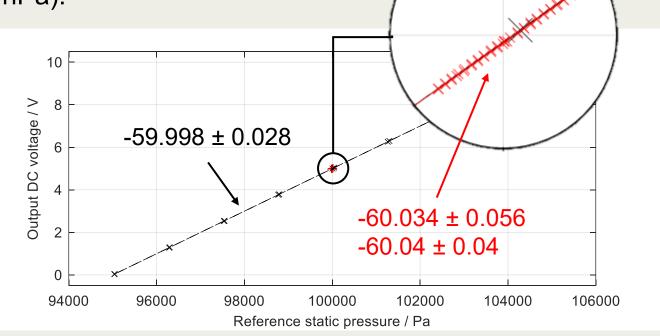

O3.1-761

Comparison of Static vs Dynamic Results

Results

Method	Sensitivity dB re 1 V/Pa	Expanded uncertainty in dB (k=2)
Static	-60.034	0.056 dB
Dynamic	~ -60.04	0.04-0.08 dB

- Sensitivities are in agreement within uncertainties
- Normalized error E_n: all values ≤ 1
- → Confirms good consistency between methods



Dominique RODRIGUES, Frédéric BOINEAU

O3.1-761

Discussion - Limits of Static Calibration

- Challenge: 2 Pa steps calibration over ~40 Pa range are difficult to achieve.
- Classical approach: barometers are usually calibrated over their full range.
- Extended range calibration (950 hPa 1050 hPa):
 - Sensitivity M_p : -59.998 dB re 1 V/Pa
 - Expanded uncertainty (k=2): 0.028 dB
- Results seems to be consistent.
- Risk: extended static calibration may underestimate uncertainty and give biased results → not fully representative of the real infrasound operating range (some tens of Pa).

Dominique RODRIGUES, Frédéric BOINEAU

O3.1-761

Conclusions & Perspectives

- Key requirement: define a transfer standard covering DC-20 Hz
- Microphones: reliable and traceable for frequencies above 0.1 Hz
- Barometers: promising for very low frequencies / near DC
 - Unique dual calibration paths
 - Static → accurate results near DC / very low frequencies.
 - Dynamic → essential at higher frequencies, when response may deviate from flat, and provides phase.
 - Complementary methods → combining both = more robust calibration
- Next step: extend study to other barometer models to strengthen consistency and robustness

