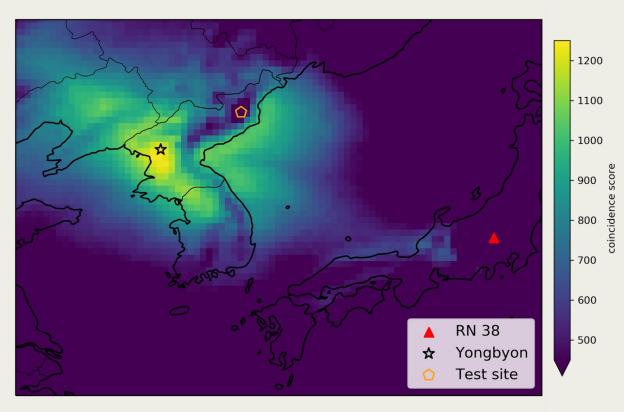
Atmospheric transport modelling analyzing source regions for recurring peak detections of radioxenon at RN38 and the Pacific

LIGHTNING TALK

J. Ole Ross¹, Patrick Hupe¹, Sofia Brander²


¹Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany

²Federal Office for Radiation Protection (BfS), Freiburg, Germany

 RN38 in Takasaki has played an important role in the detection of radioxenon following North Korean

nuclear tests, particularly in 2013 and 2016

- At RN38 from Jan 2024 to Aug 2025 about 115 samples contained >8 mBg/m³ ¹³³Xe activity concentration.
- Backward atmospheric transport modelling (ATM) was performed for those samples using HYSPLIT with 0.25° Global Forecast System (GFS) meteorological data. Only the sampling times were considered, regardless of the absolute activity concentration values.
- Counting the number of sensitivity time steps that coincide spatially in the range of 10⁻¹⁷ to 10⁻¹⁴ per m³ indicates the area around Yongbyon as common sensitivity spot. However, a contribution of local sources cannot be excluded.

P2.3-646