Applications in nuclear explosion monitoring using predictive source models for radioxenon discharges from nuclear facilities Martin Kalinowski¹, Matthias Auer¹, Ted Bowyer², Matthew Cooper², Charlie Doll², James Ely², Paul Eslinger², Judah Friese², Sid Hellman¹, Lori Metz², Mihaela Rizescu¹, Ramesh Sarathi², Brian Schrom², Cari Seifert² ¹Instrumental Software Technologies, Inc. (ISTI), ²Pacific Northwest National Laboratory (PNNL) P2.3-218 - This poster is about predictive source models - Created from stack data collected by the Source Term Analysis of Xenon (STAX) project - Find out how much you can learn from these source models, e.g. - At what distance may a source still be detected? - Can a release from a MIPF or an NPP ever cause isotopic ratios above the IDC screening threshold when observed in an IMS sample? | Source model | Action | Interpretation | |--|------------------------|--| | Release pattern over a day, week, or year | Check variability | Is the continuous release assumption reasonable? | | Concentration distribution as probability density function | Apply dilution factors | Assess detectability as a function of distance | | Parameters like maximum of ¹³⁵ Xe/ ¹³³ Xe isotopic ratio | Determine maximum | Compare with IDC screening threshold |