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-0esesesessesesse-ee-e- INTRODUCTION AND MAIN RESULTS

In this work, we use an analytical toy model to explore the phase space of viable -
subsurface transport conditions that can result in detectable radioxenon from -
underground nuclear explosions at downwind stations. This analysis demonstrates that a
minimum release ~108 Bq of 133Xe is needed for downwind detection at 50 km, and that
quantity increases to ~10"" Bq for 2000 km. We calculate that effective permeabilities
less than 10-'*m? are not likely to result in detectable 33Xe for a 1-kt explosion at 100-m
and 200-m depths of burial. Smaller downwind distances, more favorable wind
conditions, and the presence of fast subsurface pathways would broaden the range of -
subsurface conditions that lead to detectable downwind signals. :
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Estimated Minimum 133Xe Release Quantities
Required for Downwind Detection

Using the median analytical dilution factors with
radioactive decay from Eslinger, et al.[1], and the stated
sensitivity of the Xenon International radioxenon
collection and analysis system (0.15 mBg/m3) [2], we
calculate the minimum required '33Xe release from an
underground nuclear explosion that would result in
downwind concentrations above the expected minimum
detectable concentration (MDC).

Minimum Xe-133 release quantity (Bq) per
collection period
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Here we use the median dilution factor, but these factors
are observed to vary by several orders of magnitude
depending on wind conditions.[1] We also assume that
background conditions are such that any measured
quantity over the expected MDC is detectable. The
required minimum release quantities are used to bound
the viable range of subsurface transport conditions.
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An Analytical Toy Model for Estimating '33Xe
Release Quantities from Underground
Nuclear Explosions

Calculation steps:

1. Determine initial pressure and radius of cavity based
on 1 kt yield [3, 4], assuming sufficiently deep burial.

2. Calculate increased subsurface plume volume and
pressure for a fixed step change in plume radius,
assuming instantaneous equilibrium conditions.

3. Calculate velocity of pressure front based on 1-D
Darcy’s Law (constants derived from ref. [5-6]).

4. Calculate time needed for this expansion to occur,
given the calculated velocity of the pressure front.

5. Repeat Steps 2-5 until the plume extends beyond
the surface for at least one downwind collection
period.

6. Calculate the fraction of the plume above the ground
in the first collection period after it reaches the
surface, estimate total '33Xe release in that period,
assuming no subsurface fractionation, and correct
for decay during subsurface transport.
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Results and Implications for Subsurface
Transport Modeling and Simulations

133X e Released in First6 hr after Plume Reaches Surface
for 1 kT UNE Buried at 100 and 200 m
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Key relationships:
« Time to surface x permeability-'
+ Emission rate without decay «x permeability-2
* Emission rate with decay

~ exp(- C / permeability) / permeability?
This analysis assumes homogeneous permeability and
porosity in the subsurface with no fast fracture
pathways. Any subsurface conditions that combine to
exhibit the same effective permeability would produce
similar results. Atmospheric pumping is also neglected,
but will be an important contributor to late-time seepage.

With this analytical toy model, we find that subsurface
permeabilities below 10 m2? do not likely vyield
sufficient '33Xe to be detected between 50-2000 km
downwind.
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Permeability in Various Geologic Media [7]

Permeability (m?)
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