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In this work, we use an analytical toy model to explore the phase space of viable

subsurface transport conditions that can result in detectable radioxenon from

underground nuclear explosions at downwind stations. This analysis demonstrates that a

minimum release ~108 Bq of 133Xe is needed for downwind detection at 50 km, and that

quantity increases to ~1011 Bq for 2000 km. We calculate that effective permeabilities

less than 10-14 m2 are not likely to result in detectable 133Xe for a 1-kt explosion at 100-m

and 200-m depths of burial. Smaller downwind distances, more favorable wind

conditions, and the presence of fast subsurface pathways would broaden the range of

subsurface conditions that lead to detectable downwind signals.
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Key relationships:

• Time to surface ∝ permeability-1

• Emission rate without decay ∝ permeability-2

• Emission rate with decay 

~ exp(- C / permeability) / permeability2

This analysis assumes homogeneous permeability and

porosity in the subsurface with no fast fracture

pathways. Any subsurface conditions that combine to

exhibit the same effective permeability would produce

similar results. Atmospheric pumping is also neglected,

but will be an important contributor to late-time seepage.

With this analytical toy model, we find that subsurface

permeabilities below 10-14 m2 do not likely yield

sufficient 133Xe to be detected between 50-2000 km

downwind.

Calculation steps:

1. Determine initial pressure and radius of cavity based

on 1 kt yield [3, 4], assuming sufficiently deep burial.

2. Calculate increased subsurface plume volume and

pressure for a fixed step change in plume radius,

assuming instantaneous equilibrium conditions.

3. Calculate velocity of pressure front based on 1-D

Darcy’s Law (constants derived from ref. [5-6]).

4. Calculate time needed for this expansion to occur,

given the calculated velocity of the pressure front.

5. Repeat Steps 2-5 until the plume extends beyond

the surface for at least one downwind collection

period.

6. Calculate the fraction of the plume above the ground

in the first collection period after it reaches the

surface, estimate total 133Xe release in that period,

assuming no subsurface fractionation, and correct

for decay during subsurface transport.

Exploring bounding parameters for modeling subsurface transport of 

radioxenon

Using the median analytical dilution factors with

radioactive decay from Eslinger, et al.[1], and the stated

sensitivity of the Xenon International radioxenon

collection and analysis system (0.15 mBq/m3) [2], we

calculate the minimum required 133Xe release from an

underground nuclear explosion that would result in

downwind concentrations above the expected minimum

detectable concentration (MDC).

Here we use the median dilution factor, but these factors

are observed to vary by several orders of magnitude

depending on wind conditions.[1] We also assume that

background conditions are such that any measured

quantity over the expected MDC is detectable. The

required minimum release quantities are used to bound

the viable range of subsurface transport conditions.
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