

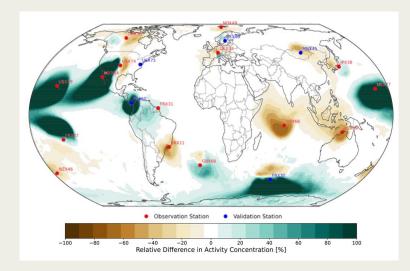
Improving radioxenon background estimates based on nudging observations and machine learning

LIGHTNING

C. Maurer¹, S. O. Nabavi², P. De Meutter³, C. Gueibe³, A. Stohl², R. Schoemaker⁴, A. Tipka⁴, M. Krysta⁴, N. Murphy⁴, and I. Hoffman⁴

P2.3-213

¹GeoSphere Austria — University of Vienna² — SCK CEN³ — CTBTO⁴



- Our poster is about novel approaches to the challenging task of detecting underground nuclear explosion signals.
- This implies a combination of a data assimilation approach called *Nudging** and a machine learning method using the *Isolation Forest Algorithm*.
- First results demonstrate the ability of the chosen data assimilation approach to improve radioxenon background fields but also point to expected challenges.
- Two different scenarios for the envisioned exploitation of the methods are discussed.

^{*} See also the XeBET project companion poster P2.3-286.