

-00-00000-0-00000-00-0-00-00000-0-0

Selecting the Right Noble Gas Tracer: Balancing Experiment Needs and Practical Challenges

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

Pacific Northwest National Laboratory

.........

Presentation Date: 15 September 2025

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

O2.3-247

What makes a good noble gas tracer?

- Half-life considerations
 - Length of the sampling campaign
 - Operational constraints
- Relevance
 - Is this the species of interest or a surrogate?
- Measurement frequency
 - Is real-time, onsite, measurement needed?
 - Are periodic samples analyzed offsite sufficient?
- Acquisition
 - How hard is the tracer to produce?
 - Cost

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

Ar-37 (Half-life 35.01 d)

- Ar-37 is an isotope of interest for nuclear explosion monitoring with work ongoing to develop and improve fieldable systems
- Potential for background challenges from ³⁹Ar at legacy test sites
- A 35-day half-life makes ³⁷Ar valuable for long-term (year+) studies of argon in the environment
- Least soluble of the tracers considered here (lowest impact from water in the testbed)

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

Ar-37 (Half-life 35.01 d)

Acquisition

- Production of pure ³⁷Ar requires irradiation of enriched ³⁶Ar (0.334%)
 - Higher complexity, high cost

Detection

- Requires collection of discrete samples for analysis (no real-time capability)
- Potentially challenging measurement outside of established laboratories

Ar-37 spectrum from a field collected sample.

C. Johnson, "UNESE Phase 2: Gas migration studies in a tunnel test location", SnT 2019.

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

Xenon-133 (Half-life 5.25 d)

- Xe-133 is an isotope of critical interest in nuclear explosion monitoring
 - Can leverage and exercise existing techniques for sampling and detection
- A 5-day half-life is workable for short (< 1 month) transport studies
 - Presents operational timing challenges
- Xenon sorption on geologic zeolites can be impactful in certain geologies

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

Xenon-133 (Half-life 5.25 d)

- Acquisition
 - Can be produced via irradiation of ¹³²Xe
 - Available from medical isotope suppliers
- Detection
 - Straightforward real-time detection
 - Counting of discrete samples can be conducted via γ-singles (on location) or via β-γ detection (offsite)

Field collected ¹³³Xe γ spectrum measured onsite.

C Johnson et al., "Injection and sampling of ¹³³Xe in shallow boreholes in alluvium," JRNC, 2022.

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

Xenon-127 (Half-life 36.34 d)

 Xenon-127 is not a current isotope of interest for nuclear explosion monitoring

However...

Other xenon isotopes are of critical interest

- A 36-day half-life makes ¹²⁷Xe uniquely valuable for longterm (year+) studies of xenon in the environment
 - The assumption becomes that all xenon isotopes behave similarly

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

O2.3-247

Xenon-127 (Half-life 36.34 d)

- Acquisition
 - Production of pure ¹²⁷Xe requires irradiation of enriched ¹²⁶Xe (0.089%)
 - Higher complexity, very high cost
- Detection
 - Straightforward real-time detection
 - Multiple high intensity (>15%) gamma emission peaks (172 keV, 203 keV, 375 keV)
 - Options also exist for laboratory betagamma detection

Field collected real-time ¹²⁷Xe γ singles concentrations (top) and a ¹²⁷Xe β-γ spectrum (bottom).

Pacific Northwest

C. Johnson, "UNESE Phase 2: Injection and measurement of gaseous tracers at U-12p Tunnel", 2020.

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

Radon-222 (Half-life 3.82 d)

- Radon-222 is not an isotope of monitoring interest, but can be significant as a background in detector systems
- Potentially provides natural tracer for study of subsurface changes
 - Naturally produced by decay of ²³⁸U
 - Can be present in very high subsurface concentrations (>100,000 Bq/m³)
- Useful for understanding of sampling borehole quality
- Most soluble of the tracers considered here (highest impact from water in the testbed)

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

Radon-222 (Half-life 3.82 d)

Acquisition

- Straightforward production via radon generator
- Can also be leveraged as a naturally present tracer in certain geologies
- Detection
 - Simple real-time alpha detection with commercial radon detectors

Radon concentration as a function of depth across 4 sampling campaigns.

C. Johnson *et al.,* "Field measurement of subsurface radon content from a series of underground chemical explosions," submitted to JRNC, 2025.

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

O2.3-247

What about stable gases?

- Stable gases can also be used as tracers
- Aim is to perturb natural abundance (isotopic or elemental)
- Acquisition
 - Can be directly purchased from gas companies
 - Required quantity highly dependent on tracer choice
 - Elemental perturbation requires significant tracer volume (100's of L or more)
 - Rare isotopes require less tracer, but are costly and harder to acquire
- Detection
 - Potential for real-time detection via in-field mass spectrometry
 - Sensitivity may require off-site laboratory measurements
 - Small required sample size

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

O2.3-247

Conclusions

- There is no one perfect noble gas tracer
- Tracers should be chosen based on experiment needs
 - Relevance, cost, detectability, attainability, duration
- Noble gases aren't perfectly unreactive considerations such as solubility and sorption should be kept in mind
- Radioactive tracers provide significantly improved real-time detection and direct measurement of isotopes of interest
- Stable tracers are generally cheaper and can be handled more easily

Christine Johnson, Carolyn Seifert, Justin Lowrey, Michael Foxe, Johnathan Slack

02.3-247

Questions?

This Low Yield Nuclear Monitoring (LYNM) research was funded by the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (NNSA DNN R&D). The authors acknowledge important interdisciplinary collaboration with scientists and engineers from LANL, LLNL, NNSS, PNNL, and SNL.

