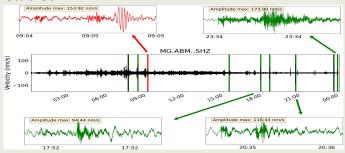
Distinguishing Earthquakes from Anthropogenic Events in Madagascar

Hoby N.T. Razafindrakoto and A. T. Rakotoarisoa

Institute and Observatory of Geophysics in Antananarivo (IOGA)

••••••• AND MAIN RESULTS

Earthquake catalogs are often contaminated by anthropogenic events, which can introduce bias into the seismic hazard assessments. This study develops a Convolutional Neural Network (CNN) that utilizes spectrograms for waveform classification. Our approach consists of three main steps: (1) generating the time-frequency representation of ground motion recordings (spectrograms); (2) a learning phase that utilizes known events, and (3) making predictions. During the learning phase the CNN model demonstrated its ability to accurately identify the nature of the events, achieving a classification accuracy. Only 2.5% of the events were misclassified. Furthermore, the prediction results indicate that the model effectively identifies the nature of events even in regions that were not included in the training phase.

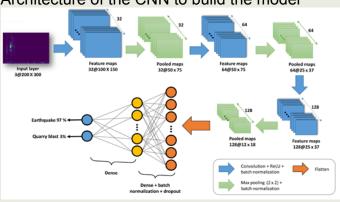

Distinguishing Earthquakes from Anthropogenic Events in Madagascar

Hoby N.T. Razafindrakoto and A. T. Rakotoarisoa

P2.2-72

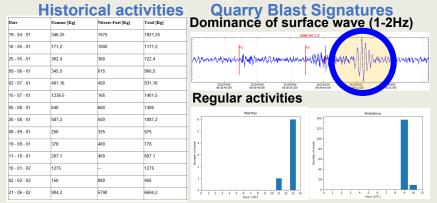
INTRODUCTION

- Seismic record contains natural earthquakes and human activities that cause ground shaking
- Well-classified earthquake catalog: essential for seismic hazards and earthquake-related studies

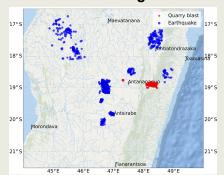


Objectives

- To discriminate human-made and natural earthquake
- · To better understand Mining-induced seismicity

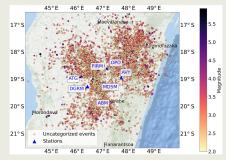

CONVOLUTIONAL NEURAL NETWORK

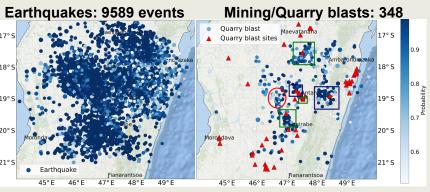
Architecture of the CNN to build the model


LEARNING PROCESS

Building the CNN model using **data with known class** (153 mining/quarry blasts and 2339 earthquake events.

- 80% of data for training and validation: to construct and tune the model
- 20% for testing: to assess model performance


Data for Learning Process


Maevatanana Ouarry blast Earthquake 17° 5 Antananativo 19° 5 Antananativo 20° 5 Fianarantsoa

Correctly classified: 350 events (98.04 %) Incorrectly classified: 7 events (1.96 %)

EVENT PREDICTION

Predict the **nature of 9937 events** (46,281 spectrograms) recorded in the central part of Madagascar between 1988 to 2024

- Blasts: clustered mostly around known mining/quarry sites
- CNN model are able to identify: mining sites used in the training and new sites

CONCLUSION

- This study demonstrates the ability of CNN to categorize events
- CNN model effectively identifies the nature of events even in regions that were not included in the training
- The finding has important implication in mining control

