

Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

TMc Student / University of Brasília / Seismological Observatory

Presentation Date: 11 September 2025

Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

02.2-767

Outline

- 1. Introduction
 - 1.2 Scientific Context
- 2. Methodology
- 3. Data Analysis and Results
 - 3.1 Event of July 28, 2022
 - 3.2 Event of December 6, 2019
- 4. Discussion and Conclusions

Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

02.2-767

Introduction

IMS Infrasound Stations

- Operated by CTBTO, designed for nuclear test monitoring.
- Also detect natural and anthropogenic events (e.g., bolides).

Undergraduate Research

- Analysis of bolides detected by IMS stations in South America (2018–2025).
- Data source: NASA CNEOS catalog.

Case Studies

- Two events: 2019 and 2022.
- Energy < 1 kt TNT.

Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

O2.2-767



Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

02.2-767

How is infrasound generated?

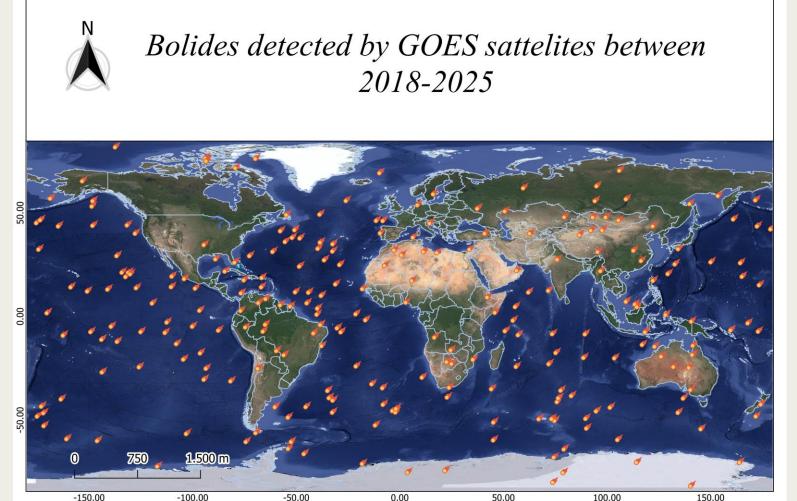
Scientific Context

Modified from the American Meteor Society (American Meteor Society, 2025).

Meteoroids in the Atmosphere

- Fragments of asteroids or comets.
- Produce visible phenomena: meteors, fireballs, bólides.
- Classification depends on mass, velocity, and energy.

Infrasound Production

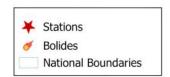

- Atmospheric entry generates shock waves.
- Shock waves propagate as infrasound (<20 Hz).

Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

O2.2-767

Methodology

- •Data Source: CNEOS database
- Detection System: GLM sensors onboard GOES satellites.
- •*Time Period*: 2018 2025
- •Data Collected: 263 bolide events recorded worldwide.
- Purpose: Analyze global distribution and characteristics of bolide events.


Letícia Guedes Assunção , Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

O2.2-767

Methodology

Bolides detected by IMS infrasound stations located in South America

- -150.00-100.00
- 263 bolides (2018–2025) recorded globally.
- by IMS infrasound • 19 detected stations in South America, 14 in SEL-3 Bulletin and 5 via waveform analysis.
- Case Studies: Dec 6, 2019 (Brazil) & Jul 28, 2022 (Pacific).
- IMS Infrasound Stations: 120EC (Ecuador), I08BO (Bolivia), I09BR (Brazil), and I41PY (Paraguay).
- Analysis with DTK-GPMCC: direction, speed, frequency and signal duration.

Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

O2.2-767

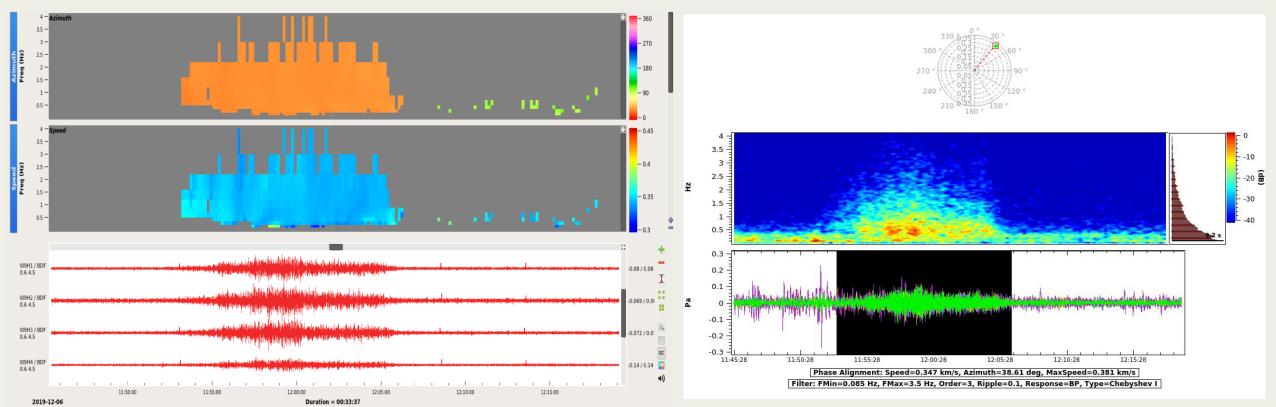
Data Analysis and Results

Event of December 6, 2019

Bolide Event - Fortaleza, Brazil

- Detection time: 10:28 UTC (CNEOS).
- Altitude: ~19.5 km (CNEOS).
- Energy released: ~0.15 kt TNT (CNEOS).

IMS infrasound detections:


- I09BR (Brazil)
- I41PY (Paraguay)
- I08BO (Bolivia).

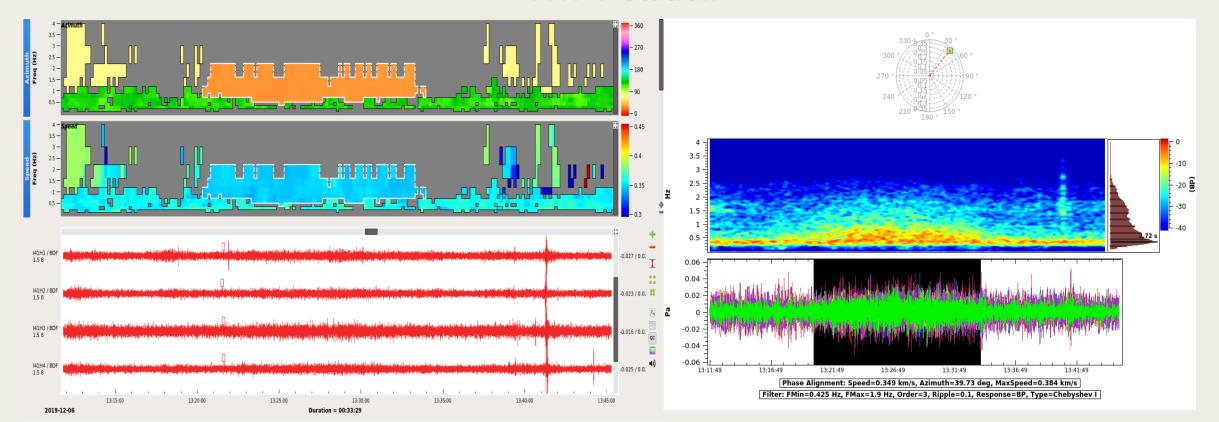
Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

02.2-767

109BR Station

I09BR → closest station, ~1,800 km.

- •Waveform → arrival at 1h27min, duration ~13 minutes.
- •Spectrogram → energy 0.3–1 Hz, peak at 0.5 Hz (stratospheric range).
- •Back-azimuth (39°) → source Direction.
- •Apparent velocity (0.346 km/s) → confirms stratospheric propagation.



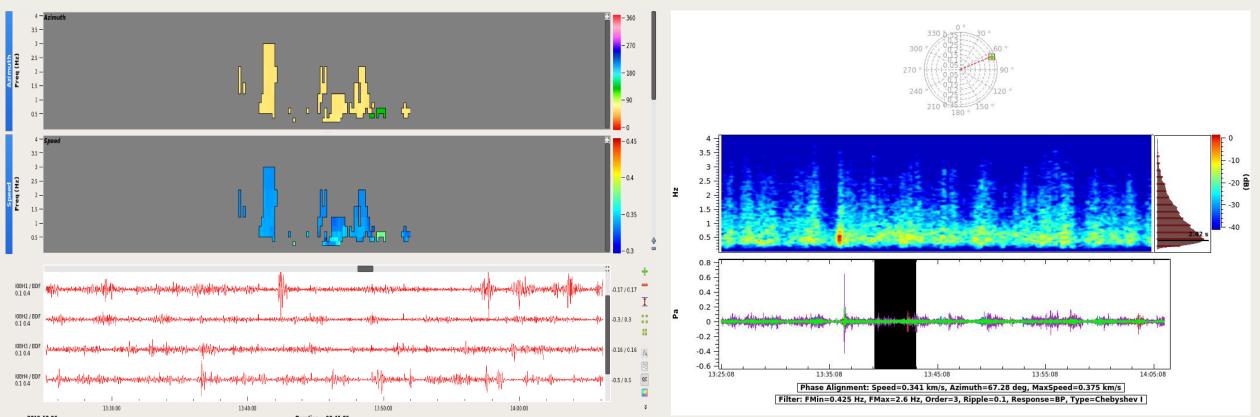
Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

O2.2-767

I41PY Station

I41PY → second station, ~3,300 km

- •Waveform → arrival at 2h41min, duration ~14 minutes
- •Spectrogram → energy 0.3–1 Hz, peak at 0.7 Hz (stratospheric range)
- •Back-azimuth (39°) → source direction
- •Apparent velocity (0.349 km/s) → consistent with stratospheric propagation



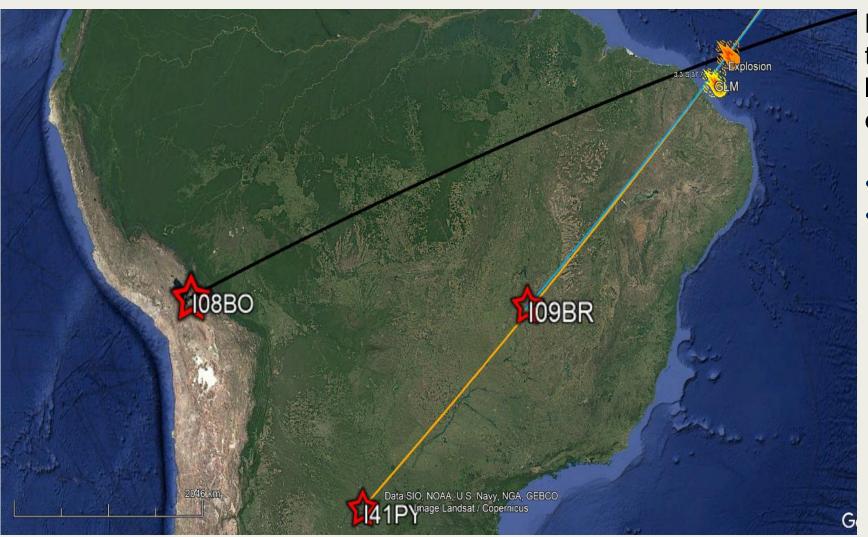
Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

O2.2-767

108BO Station

I08BO → most distant station, ~3,600 km

- •Waveform → arrival at 2h57min, duration ~6 minutes.
- •Spectrogram → weak signal, energy around 0.5 Hz.
- •Back-azimuth (68°) → source Direction.
- •Apparent velocity (0.341 km/s) → consistent with stratospheric propagation.



Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

O2.2-767

Localization

Based on the back-azimuths from the three IMS stations, the location of the atmospheric explosion was estimated as:

·Latitude: 1.6° S

Longitude: 36.8° W

Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

O2.2-767

Data Analysis and Results

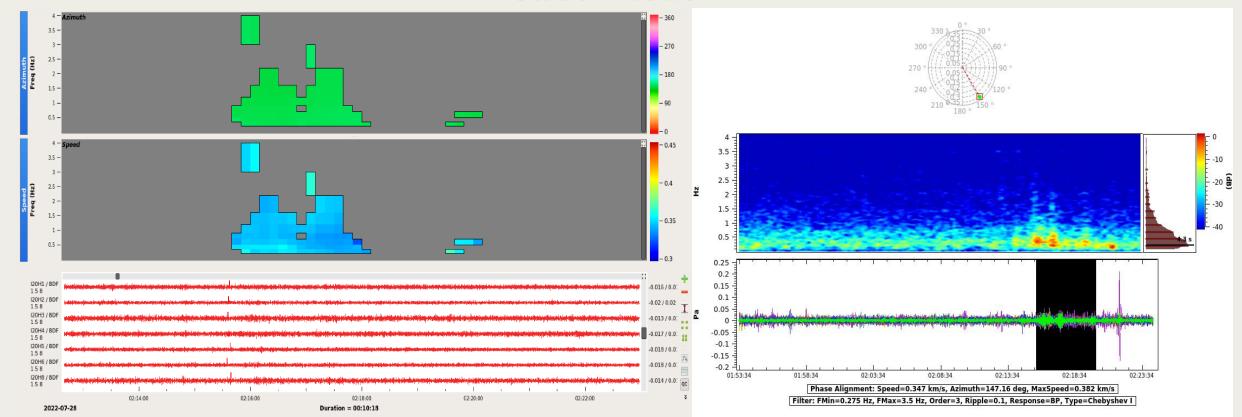
Event of July 28, 2022

Map Elements

Bolide Event: Southeast of the Galápagos Islands.

- Detection time: 01:36 UTC.
- Altitude: ~37 km.
- Velocity: ~30 km/s.
- Energy released: ~0.68 kt TNT.

IMS infrasound detections:


- Ecuador, Bolivia and Brazil.
- Signal tracked up to: 4,000 km

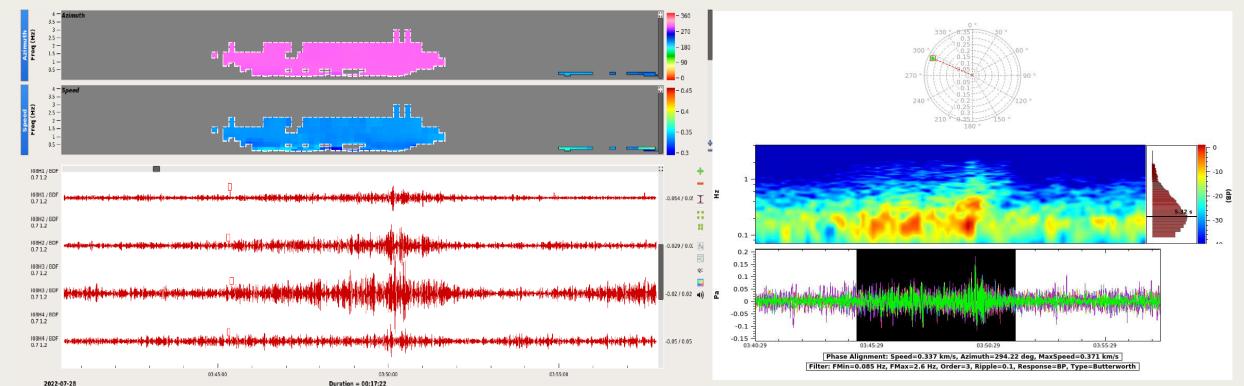
Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

02.2-767

Station I20EC

I20EC → closest station, ~670 km

- •Waveform → arrival 39 minutes after GLM, duration ~4.7 minutes
- •Spectrogram → energy 0.3–0.5 Hz, peak at 0.5 Hz
- •Apparent velocity → 347 m/s
- •Propagation → tropospheric (lower atmosphere)



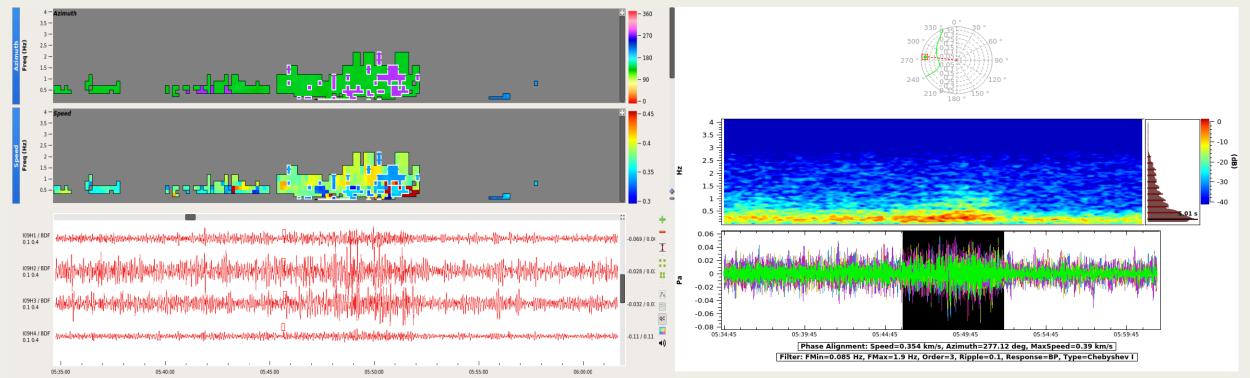
Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

O2.2-767

Station 108BO

I08BO → second closest station, ~2,378 km.

- •Waveform → arrival ~2 hours after bolide, duration ~7 minutes.
- •Spectrogram → energy 0.1–0.6 Hz, dominant 0.4 Hz.
- •Apparent velocity → 0.337 km/s.
- •Back-azimuth → 294°.
- •Propagation → stratospheric (upper atmosphere, long distance).



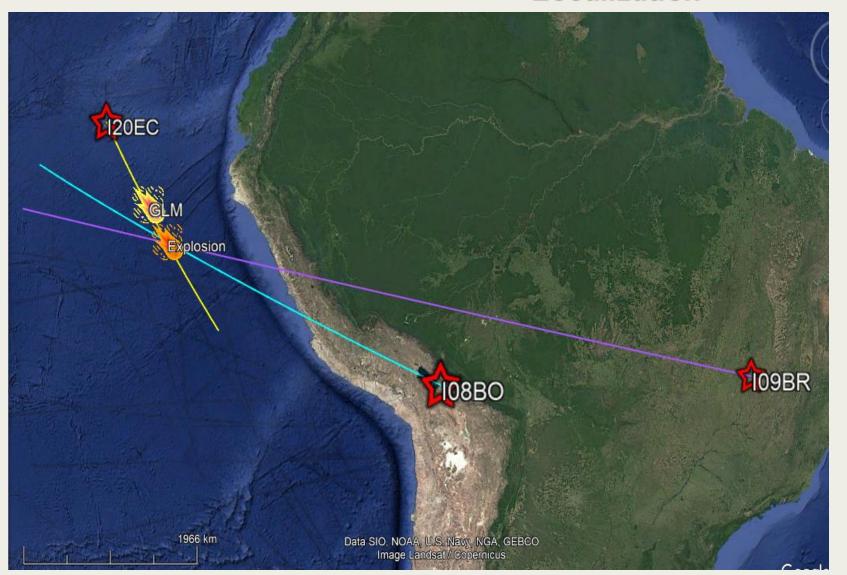
Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

O2.2-767

Station 109BR

I09BR → most distant station, ~4,450 km

- •Waveform → two signal families:
 - 277°, duration ~6.5 minutes, apparent velocity 0.354 km/s (matches true azimuth); 137° → not consistent with bolide
- •Spectrogram → energy at 0.56 Hz, band 0.2–0.6 Hz
- •Propagation → stratospheric (over 4,000 km).



Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

O2.2-767

Localization

The estimated coordinates are:

Latitude: 8.1° S

Longitude: 85.4° W

Letícia Guedes Assunção, Lucas Vieira Barros, Darlan Portela Fontenele, Nicolas Rainner Imanna, Juraci Mario de Carvalho, Ana Clara De Araujo Sousa

02.2-767

Discussion and Conclusions

Bolide Event Analyses – Dec 2019 & Jul 2022

- IMS infrasound stations detect low-energy meteoroids over vast distances. Propagation:
- 2019 → mostly stratospheric.
- 2022 → tropospheric + stratospheric paths.
- Consistent with GLM sensor data \rightarrow validates IMS detection method.
- Demonstrates IMS potential for global meteoroid monitoring.

