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011 Introduction
1.1 The Critical Role of CTBT Monitoring

      

       The Comprehensive Nuclear-Test-Ban Treaty (CTBT) relies 

on the International Monitoring System (IMS) to detect 

unauthorized nuclear tests, with four key monitoring 

technologies: seismic, infrasound, hydroacoustic, and 

radionuclide. My research focuses specifically on seismic and 

infrasonic signals—these generate massive streams of 

continuous waveform data, but the grand challenge remains: 

automatically, rapidly, and accurately distinguishing nuclear 

explosion signals from natural events (e.g., earthquakes, 

storms) and background noise. 



1 Introduction
1.2The Core Problem: The "Paradigm Gap"
   
      At the heart of this challenge lies a “paradigm gap”:
Current state-of-the-art automated systems: Depend on 1-D signal 
processing techniques—such as STA/LTA or slowness-based 
triggers, wavelet transforms or hand-crafted feature extraction 
(e.g., duration, amplitude, spectral ratios), and traditional ML 
classifiers like SVM or Random Forest. These methods struggle to 
capture the intuitive, context-driven patterns that human experts 
recognize.
      Expert human analysts: Rely on visual interpretation. They 
examine waveform plots and spectrograms, identifying subtle 
shapes, temporal patterns, and contextual cues that are instinctive 
to the eye but extremely difficult to mathematically encode into 
1-D algorithms.
      This gap leads to a critical limitation: automated results still fall 
short of manual review. Final human validation remains mandatory, 
which is inefficient, time-consuming, and unscalable for the IMS’s 
ever-growing data volume. So, how do we bridge this divide?



2: Our Innovative Proposal: A Paradigm Shift

   

   Our solution aligns with how experts actually work: if human 

analysts use vision to identify signals, we should teach AI to “see” 

too. The core idea is to reframe the 1D signal detection problem as 

a 2D visual recognition task—a paradigm shift that lets AI learn the 

same visual patterns and features that experts rely on.

Here’s how it works in practice: we convert 1-D time-series 

seismic and infrasonic signals into 2-D images (e.g., waveform 

plots, spectrograms), then apply state-of-the-art computer vision 

models to these images. By doing so, we effectively encode human 

visual expertise into the automated system—closing the gap 

between manual intuition and machine processing.



3: Methodology: Overall 4-Step Framework
 To turn this idea into a actionable pipeline, we designed a clear 
4-step framework. Let’s break down each step:    
 
                                                    
                Raw Seismic/Infrasound Signal  
       
          
Signal -> Image (Spectrogram/Waveform Plot)

        Annotated Image (Bounding Boxes for P, S, I waves)

        Annotated Images + YOLOv11 Algorithm -> Trained Model

       
 New Signal -> Image -> Trained Model -> Output (Class + Time 
Bounding Box,signal type, P/S label)      

Input 

Step 1: Preprocessing & Imagification

Step 2: Dataset Construction: Image -> Manually

Step 3: Model Training

 Step 4: Inference & Application:



    Step 1: Signal Preprocessing & Imagification
 First, we refine raw signals and transform them into high-quality, 
feature-rich images—this is the foundation of our visual approach:
Preprocessing: We address noise and inconsistencies with four key 
steps:

l Eliminate breakpoint abnormal signals to remove artifacts.
l Detrend to strip out long-term instrumental or environmental 

trends (e.g., drift from sensor temperature changes).
l Apply bandpass filtering to isolate relevant frequency bands 

(e.g., 1–10 Hz for P-waves, 0.3–4 Hz for infrasound).
l Normalize amplitude to a standard range (e.g., [0, 1024]) to 

ensure consistent input for the model.
Imagification: We convert processed signals into two types of 
2-D images, each serving a purpose:

l Waveform plots: Simple line graphs of amplitude vs. time—
ideal for clear, impulsive signal phases (e.g., sharp P-waves).

l Spectrograms: Time-frequency representations where color 
intensity indicates power at a specific frequency and time. 
These are far richer in features and superior for distinguishing 
complex signals (e.g., overlapping S-waves or infrasound I-
waves).



 Step 2: Dataset Construction & Annotation

Dataset Construction

 A robust computer vision model needs high-quality labeled data—

so we built a curated dataset tailored to nuclear explosion 

monitoring:

Data curation: We collected confirmed “ground-truth” data, 

including undergroud seismic signals from nuclear and mining 

explosions, infrasonic signals from historical atmospheric nuclear 

explosion and bolides explosion signals. We also included 

background noise (e.g., microbaroms, MAWs) to ensure the model 

learns to distinguish signals from interference.
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 Data examples of atmospheric nuclear 
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infrasonic signals from a bolide explosion 

infrasonic signals from one of the atmospheric 
nuclear explosions from China 



record noises of MAWs and microbaroms of long durations continuously  almost every day. 



MAWs 



 Step 2: Dataset Construction & Annotation

Annotation:
 Using tools like LabelImg, we manually drew bounding boxes around key signals. Our 

annotation scheme is precise and task-specific:

l For seismic signals: Label signal classes (explosion, earthquake) and seismic 

phases—specifically P-waves (primary) and S-waves (secondary)—with the 

flexibility to extend to sub-phases like Pn, Pg, Sn, or Lg. Notably, an annotated 

image typically contains multiple labels, covering both signal class and seismic 

phases.

l For infrasound signals: Label signal classes (explosion) and infrasound phases—

namely I-waves—including sub-types like Ig (Ground), Is (Stratosphere), or It 

(Thermosphere). Similarly, an annotated image usually includes multiple labels, 

encompassing both signal class and infrasound phases (e.g., "explosion", "Is").

Critically, each bounding box defines two things: the signal’s class (e.g., “explosion”) 

and its exact time window (start/end time)—this is essential for later event 

localization.



Step 3: AI Model select and Training 

- Why YOLOv11?

    We chose YOLOv11 (You Only Look Once) as our core model—and for good 

reason: it’s the latest evolution of real-time object detection architectures, 

and it’s perfectly suited to our task.

Why YOLOv11?

l Single-stage detector: Extremely fast and efficient—critical for 

processing the IMS’s continuous data streams in near-real time.

l High accuracy: It features improved components:

l Backbone network: Better at extracting fine-grained features from 

signal images (e.g., subtle frequency shifts in spectrograms).

l Neck architecture: Enhances feature fusion, helping the model 

combine low-level (e.g., edge) and high-level (e.g., pattern) features.

l Training strategies: Boosts accuracy and stability, even with limited 

labeled data.

l Multi-object detection: It can identify multiple signals (e.g., P-wave + 

S-wave) in a single image—unlike some 1-D methods that struggle 

with overlapping phases.
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Step 3: AI Model select and Training - Why YOLOv11?

        Backbone Network: Better feature extraction from images.

        Neck Architecture: Improved feature fusion.

        Training Strategies: Enhanced accuracy and stability.



Our training setup was straightforward but rigorous:
We used the YOLO framework (via Ultralytics) with the 
pre-trained yolo11n.pt model as a starting point.

Dataset split: 50% training, 10% validation, 40% testing—
ensuring we evaluate generalization, not just overfitting.
Training parameters: 200 epochs, input image size of 
1024x2048 , batch size of 16.

Classes labeled: 5 key categories—‘p’ (P-wave), ‘s’ 
(S-wave), ‘explosion’, ‘earthquake’,’I’(infrasonic 
wave),

How to train the models?

Step 3: AI Model select and Training 



Step 4: Inference & Application

    Deployment: The trained YOLOv11 model is integrated into the 
processing pipeline.
     Process for New Data:

        Continuous data is segmented.

        Each segment is preprocessed and converted to an image 
(same as training).

        The image is fed into the model.

        The model predicts bounding boxes with class probabilities.

    Output:
        Detection: Whether a signal (P, S, or I) is present.

        Classification: What type of signal/event it is (e.g., “explosion” 
vs. “earthquake”).

       Localization: Exact start and end times of the signal—this 
provides the arrival time data needed to calculate the event’s 
geographic location (a core requirement for CTBT verification).



4. Experimental Results & Analysis

4.1  Experimental Setup

    Dataset: 
1,000 seismic records and 100 infrasound records from blides and mining explosions.

    Data Split: 
50% Training, 10% Validation, 40% Testing.

    Baseline for Comparison: 
A traditional pipeline using a STA/LTA detector for picking and an SVM classifier with 
hand-crafted features (duration, frequency, etc.).

    Key Performance Metrics (KPIs):

        Average Precision (AP): The primary metric for object detection (area under the
 Precision-Recall curve).

        Precision: How many of the detected signals were correct?

        Recall: How many of the true signals did we find?

        F1-Score: The harmonic mean of Precision and Recall.
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4.2  Preliminary results: Quantitative Performance

 India 's nuclear 
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4.2: Preliminary Results: Quantitative Performance



Evaluation Metric
Traditional 

Method (STA/LTA 
+ SVM)   

 Proposed 
Method   

         (YOLOv11)   

Explosion Precision 82.2% 97.9%

P-wave Average Precision (AP) 81.3%   95.5%

S-wave Average Precision (AP)  77.1% 91.0%

I-wave Average Precision (AP)     74.3% 85.4%

Overall F1-Score 0.79 0.85

                                                                                                The machine vision approach demonstrates a dramatic increase in accuracy and reliability, 
effectively closing the performance gap with human analysts.

   A clear, bold table showing the results. Use color to highlight the superior performance of 
the proposed method.

 Significant Performance Improvement Across All Metrics



The results stand out:

      Low-SNR performance:  we tested it on a noisy 
seismic signal where the P-wave was barely visible to 
human analysts—yet the model detected it  This proves 
it’s learned the deep, context-driven visual features that 
e x p e r t s  u s e  ( e . g . ,  s u b t l e  f r e q u e n c y  s p i ke s  i n 
spectrograms).
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mining explsion infrasound
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Detection of infrasonic signals of the big meteor explosion in atmosphere in Russia on Feb. 15，2013.



Conclusion

    What we did: We introduced a novel paradigm shift by 
reformulating 1D signal detection as a 2D computer vision task.

    How we did it: We developed a pipeline to convert signals to 
images and trained a YOLOv11 model to detect and classify them.

    Why it matters: This approach successfully brides the paradigm 
gap, allowing the transfer of human visual expertise to an 
automated system.

    The outcome: The method significantly outperforms traditional 
techniques, offering superior accuracy, robustness in low-SNR 
conditions, and integrated detection+localization.

5. Conclusion & Future Work



Future Work
    
l    Apply this method to large-scale data for 

testing and validation.

l     Multi-Modal Fusion+Expert System: Train a 
single model on fused seismic + infrasound 
images to improve detection confidence and 
event discrimination.

l     Model Lightweighting: Optimize the model for 
d e p l o y m e n t  o n  e d g e  d e v i c e s  a t  r e m o t e 
monitoring stations for real-time processing.  

l     Explainable AI (XAI): Incorporate techniques to 
visualize what features the model is looking at in 
the image, building greater trust in its decisions.

5. Conclusion & Future Work

In some aspects, the language capabilities of large models 
even surpass those of humans. What about image models ?
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