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We explore deep learning methods to characterize buried explosion emplacement using
a large and growing dataset of simulated buried chemical explosions in a variety of
subsurface ground materials with ranging material properties. Deep learning models are
showing promising performance using the far-field seismic spectra to 25 Hz at the local
scale, and are successfully validated using Blue Canyon Dome data.
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• We explore fully connected neural network (FCNN) and convolutional neural 
network (CNN) architectures to classify emplacement and ground material

Zeiler et al. (2009)

Fig. 1: Local discriminant 
thresholds are affected by 
hard vs. soft rock 

Fig. 2: STFs are affected by 
ground material and source 
emplacement

Fig. 3: ML can 
estimate depth of 
burial from 
far-field 
waveforms

• Physical characteristics at the source affect discriminants as well as source time function (STF) 
and yield estimates

• Machine learning (ML) can potentially learn these near-source characteristics from seismic data

Fig. 4: Ground 
material and yield 
strength were 
shown to be more 
influential to 
far-field waveforms 
than depth in a set 
of simulations from 
better groupings in 
PCA space

• We use a nonlinear-to-linear modeling scheme to simulate 
buried explosions and their resultant far-field waveforms

• We vary the properties of a homogeneous half-space earth 
model:

• ground material
• yield strength
• fracture pressure
• source depth
• Poisson’s ratio
• strength model and model parameters
• explosive mass and material

• We are generating a growing 
dataset consisting of far-field 
waveforms recording identical 
chemical explosion sources in a 
variety of subsurface models

• We will look at 551 simulations 
and focus on ground material 
and emplacement (cavity vs. 
tamped)

Fig.6: We are working on balancing the 

Fig.7: We have two types of simulations with different 
source depths and  receiver locations based on two 
different tests conducted at NNSS. The majority of 
simulations are at the BCD-like scale. 

Fig.11: Results from training the baseline FCNN and CNN models with the full input 
spectra to 750 Hz, with darker colors highlighting better model performance metrics. Blue 
colors show percentage-based metrics, teal colors show losses, and orange colors show 
the number of trainable parameters. The true BCD class is 1(tamped).

Fig.13: Results from 
training other FCNN and CNN 

architectures, four of which are labeled 
to the left. We improve performance for 
models with 25 Hz cutoffs by using 
different numbers of dense and 

convolutional layers and layer sizes, 
as well as convolutional filter 

kernel sizes (all strides are 1). FCNN 
models outperform CNN models, but 

further exploration and hyperparameter 
optimization is needed when the full 

dataset is generated. Blue colors show 
percentage-based metrics, teal 
colors show losses, and orange 

colors show the number of trainable 
parameters. The true BCD class is 
1(tamped).

Fig.10: These plots show the 
mean (top), standard 
deviation (middle) and mean 
squared (bottom) sensitivity of 
the emplacement output to 
the input features using 5,000 
random input training 
samples and the 
trace-shuffled baseline FCNN 
model. The mean squared 
sensitivity can be interpreted 
as feature importance. Lower 
frequencies are more 
important than higher. We use 
these plots to test model 
performance when the input 
spectra are limited to lower 
frequencies using different 
high-frequency cutoffs.

Fig.12: Results from 
training the baseline FCNN 
and CNN models with 
limited higher frequencies, 
where darker colors 
highlighting better model 
performance metrics. Blue 
colors show 
percentage-based metrics, 
teal colors show losses, 
and orange colors show 
the number of trainable 
parameters. The true BCD 
class is 1(tamped).

• 2-channel waveforms record vertical and radial velocity 
(axi-symmetric simulations) and are filtered to 0.001 - 
4,500 Hz and resampled to a sample rate of 10,000 Hz

• We output discrete frequencies to 750 Hz using a fast 
Fourier transform

• features are de-meaned and normalized

• We split the input data into a train and validation set (80/20), keeping the samples from each 
simulation case together, either in the train or validation set

• We use k-fold cross validation to compare model performance with k=5
• We use a batch size of 400 and train for 200 epochs
• Training each model takes between 10 and 45 min. on an NVIDIA V100S-4Q 4 GiB GPU, 

depending on the number of trainable parameters and input data size
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Fig.9: a) The baseline fully-connected neural network (FCNN) 
architecture, which has two layers of 50 nodes each with an 
input layer of 753 data features and an output size of one for 
emplacement binary classification (cavity or tamped). b) The 
baseline convolutional neural network (CNN), which was inspired by 
X-ray diffraction models from chemistry (Szymanski et al., 2021) and has 
six layers with 1-D convolutions of kernel size five and stride of one with 
max-pooling, followed by three dense layers where the first two have a 
dropout rate of 5%. 

b) “Baseline” CNN Architecturea) “Baseline” FCNN Architecture

emplacement 
output: 
tamped or 
cavity

dense layers :
size 50

input layer :
size 753

conv-1D and 
max-pool

conv-1D and 
max-pool

dense layers emplacement 
output

conv-1D and 
max-pool

conv-1D and 
max-pool

input to first 
conv layer are 
data features

• We use the NeuralSens package 
(Pizarroso et al., 2022) to perform 
sensitivity analysis on trained FCNNs

• This is a good tool for better 
understanding and trusting the ML 
model and evaluating feature 
importance
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Fig.8: The top panel shows the filtered and resampled 
far-field particle velocities from a BCD-like simulation 
and the bottom panel shows the spectra to 750 Hz.

Summary
• Emplacement classification shows promising 

performance, even for lower-frequency input spectra
Ongoing Work and Future Directions

• Model architecture and hyperparameter optimization 
once the full dataset is generated

• Explore other input data processing or modes
• Look into other testing datasets
• Classify other near-source characteristics and add other 

characteristics to CTH modeling (e.g., porosity)
• Classify cavity features like shape and size
• Develop larger-scale capabilities (from local to regional)

Sensitivity analysis results for the baseline FCNN

Improving 25 Hz model architectures 
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FCNN: 4 layers; 100 nodes each

CNN: 1 conv layer size 25, kernel=3; 
3 dense layers size 50

CNN: 3 conv layers size 25, kernel=3; 
2 dense layers size 50

FCNN: 3 layers; 300, 150, 25 nodes
FCNNs

CNNs
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that computes nonlinear 

near-field wavefield
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Analyze 
outputs

Use far-field waveform data to train a 
ML model to predict physical 
characteristics at the source

Fig.5: This diagram outlines our nonlinear-to-linear 

Stroujkova & Leidig (2022)

T2.1-258




