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see-e -eecesesssscsssssssse-s- INTRODUCTION AND MAIN RESULTS

We explore deep learning methods to characterize buried explosion emplacement using
a large and growing dataset of simulated buried chemical explosions in a variety of
subsurface ground materials with ranging material properties. Deep learning models are
showing promising performance using the far-field seismic spectra to 25 Hz at the local
scale, and are successfully validated using Blue Canyon Dome data.
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buried explosions from seismic data

Exploring deep learning methods for characterizing near-source characteristics of

« Physical characteristics at the source affect discriminants as well as source time function (STF)
and yield estimates
» Machine learning (ML) can potentially learn these near-source characteristics from seismic data
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Underground Explosion Simulations

+We use a nonlinear-to-linear modeling scheme to simulate | "1&:3: This diagram outlines our nonlinear-to-finear

buried explosions and their resultant far-field waveforms

* We vary the properties of a homogeneous half-space earth
model:

« ground material

«yield strength

« fracture pressure

* source depth

« Poisson’s ratio

« strength model and model parameters

« explosive mass and material
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Far-Field Waveform Dataset

+ 2-channel waveforms record vertical and radial velocity
(axi-symmetric simulations) and are filtered to 0.001 -

* We are generating a growing o] aman 4,500 Hz and resampled to a sample rate of 10,000 Hz
dataset consisting of far-field *I + We output discrete frequencies to 750 Hz using a fast
waveforms recording identical —1009 Fourier transform
chemical explosion sources in a 200 - features are de-meaned and normalized
variety of subsurface models *
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and the bottom panel shows the spectra to 750 Hz.
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Deep Learning Methods + We explore fully connected neural network (FCNN) and convolutional neural i o X
network (CNN) architectures to classify emplacement and ground material /
/ S isucly,
[  mean sensitivity: &8 = =L
+ We split the input data into a train and validation set (80/20), keeping the samples from each ( ’ B g

simulation case together, either in the train or validation set

+ We use k-fold cross validation to compare model performance with k=5

+ We use a batch size of 400 and train for 200 epochs

+ Training each model takes between 10 and 45 min. on an NVIDIA V100S-4Q 4 GiB GPU,
depending on the number of trainable parameters and input data size
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Fig.9: a) The baseline fully-connected neural network (FCNN)
architecture, which has two layers of 50 nodes each with an

conv-1D and
max-pool

conv-1D and
max-pool

b) “Baseline” CNN Architecture
input layer of 753 data features and an output size of one for

emplacement binary classification (cavity or tamped). b) The

baseline convolutional neural network (CNN), which was inspired by

X-ray diffraction models from chemistry (Szymanski et al., 2021) and has

six layers with 1-D convolutions of kernel size five and stride of one with

max-pooling, followed by three dense layers where the first two have a conv-1Dand

\ dropout rate of 5%. Yo )

Preliminary Results: Emplacement Classification

Baseline model comparisons
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Fig.11: Results from training the baseline FCNN and CNN models with the full input
spectra to 750 Hz, with darker colors highlighting better model performance metrics. Blue
colors show percentage-based metrics, teal colors show losses, and orange colors show

the number of trainable parameters. The true BCD class is 1(tamped).
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Improving 25 Hz model architectures
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+ We use the NeuralSens package
(Pizarroso et al., 2022) to perform
sensitivity analysis on trained FCNNs

+ This is a good tool for better
understanding and trusting the ML
model and evaluating feature \
importance

Sensitivity analysis results for the baseline FCNN
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Summary
+ Emplacement classification shows promising
performance, even for lower-frequency input spectra
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FCNN: 3 layers; 300, 150, 25 node:

different numbers of dense and
cnns convolutional layers and layer sizes,
as well as convolutional filter
kernel sizes (all strides are 1). FCNN
models outperform CNN models, but
further exploration and hyperparameter
optimization is needed when the full
dataset is generated. Blue colors show
Fenns Percentage-based metrics, teal
colors show losses, and orange
colors show the number of trainable
parameters. The true BCD class is
1(tamped).

Ongoing Work and Future Directions

+ Model architecture and hyperparameter optimization
once the full dataset is generated

+ Explore other input data processing or modes

+ Look into other testing datasets

+ Classify other near-source characteristics and add other
characteristics to CTH modeling (e.g., porosity)

+ Classify cavity features like shape and size

+ Develop larger-scale capabilities (from local to regional)
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Fig.10: These plots show the
mean (top), standard
deviation (middle) and mean
squared (bottom) sensitivity of
the emplacement output to
the input features using 5,000
random input training
samples and the
trace-shuffled baseline FCNN
model. The mean squared
sensitivity can be interpreted
as feature importance. Lower
frequencies are more
important than higher. We use
these plots to test model
performance when the input
spectra are limited to lower
frequencies using different
high-frequency cutoffs.
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