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A transfer learning approach was adopted, using a VGG16 neural network model to classify
earthquakes from non-earthquake events in North-East China close to the North Korean test site.
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» Deeper events ( depth > 5 km, assumed to be Earthquakes) are identified at 83% accuracy.
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» Shallow events (depth < 5km, assumed to be explosions) are fewer than deeper events in number
and have low identification rate at 62%.

Pl

» Synthetics were generated for Shallow events only. Scattering effect needs to be included in the
waveform synthesis. More explosion (shallow) data is needed for better training.
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Why Transfer Learning? Transfer Learning using VGG16 architecture

Abstract

VGG-16 Model Architecture

Traditional ML VS Transfer Learning

A transfer learning approach was adopted, using aVGG16

e Learning of a new tasks relies on

neural network model to classify earthquakes from non-
earthquake events in North-East China close to the North

e |[solated, single task learning:
Knowledge is not retained or
accumulated. Learning is performed
w.o. considering past learned

the previous learned tasks:
Learning process can be faster, more
accurate and/or need less training data
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Data
Seismogram pre-processing
- @ Wilber Suppol
Wilber 3: Select Event Hibersapeert
Looking for previously requested data? View recent requests. Pre-processing of seismograms from both earthquakes and explosions:
e ————————— ) 0 Correct effect of recording instrument
| Map _g SISOV Qe o . Remove mean
800 — Ao~ @ +  Remove trend
— 0 Band-pass seismograms between 1 and 20 Hz.
1990-07:06 | W]-|2025-08-:0 | W . Images were calculated for each seismogram.
Magnitude
1 -4
| E—
S Training, Validating and Testing Data
5 -130
=
oeaton b *  Training data: 3800 seismograms from deeper events (assumed
W21z |- 13a38 € earthquakes, all observed), and 3800 from shallow (assumed
s explosions, half observed and half synthetic)
v B —— 0 Vallc_latlon: about 1900 seismograms from each class
M Goo ] events mapped. Logend - +  Testing data: about 1200seismograms from each class

699 events listed.

® Download events

More than 600 events that occurred at depths > 5 km (assumed to be
earthquakes) with magnitudes between 1 and 4 for the past 35 years in
the study area. (Source: https://ds.iris.edu/wilber3/find_event)
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Continuous Wavelet Transform (CWT)

The Continuous Wavelet Transform (CWT), Fy (o, t), is defined as the inner
product of a mother wavelet Y . (t) with the seismogram f(t):

Fuw(0,0) = [, f©) =9 (55) dt

Where 1) is the complex conjugate of ¥, o is a dilation parameter and T is a

translation parameter (Sinha et al, 2005).
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CWT of a shallow (< 5km)
event
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Waveform Synthesis of the
September 02, 2017, M6.3 N.
Korean Nuclear Explosion as
recorded by station MDJ.

» The synthetic waveforms are generated
using SW4 Code (3D) (Peterson et.al.,
2023).

» 3D velocity Structure (Vs, Vp and

density) from Julia et al. 2021 was used.

» Station MDJ is an IMS
station.

DESCLAIMER: The views expressed are those of the author and do not reflect the official policy or position of any agency of the U.S. government
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Good match at low frequencies
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Difficult to synthesize the
high frequency part

Synthetic (notice the aliasing
effect)
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Training and Validation Accuracy, and Loss Event Identification Conclusions
Training and validation accuracy Confusion matrix, without normalization 1000
074 { o Taining acc s e ata * Deeper events ( depth > 5 km, assumed to be
+ Validat\gon acc e bt ++ ++ ++++ . .: 900 E rtﬁ k ( dp tf d t 830/
il + T s arthquakes) are identified a o accuracy.
' ......l"..... * 800
LT st Lt o0 « Shallow events (depth < 5km, assumed to be
oee ] Lo 3 explosions) are fewer than deeper events in number
e P oo and have low identification rate at 62%.
.66 7 =
- 500
064 | 00 + Synthetics were generated for Shallow events only.
062 | Scattering effect needs to be included in the waveform
e . 0 synthesis.
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& & : i i
Training and validation loss Predicted label More eXp|OSIOn (Sha”OW) data IS needed for better
L] @ Training loss tralnlng
0.62 - + validation loss Normalized confusion matrix
o8 References
8 . 0.7 Petersson, N. Anders, Sjogreen, Bjorn, Tang, Houjun, &
056 ~ . Pankajakshan, Ramesh. (2023, September 6). geodynamics/sw4:
osal . - oe SW4, version 3.0. doi:10.5281/zenodo.8322590, url:
e . . & s https://doi.org/10.5281/zenodo.8322590
0.52 1 +++ ; r 0.
0.50 o Z:f:':“o.. oot = o Tang, Z., Julia, J., Mai, P. M., Mooney, W. D., & Wu, Y. (2022).
. P,y +++++:’°:’:::':' ' Shear-wave velocity structure beneath Northeast China from joint
, = o inversion of receiver functions and Rayleigh wave phase velocities:
° 1 * * 0 % ' Implications for intraplate volcanism. Journal of Geophysical
Epoch . Research: Solid Earth, 127,.
& X B
Predicted label




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5

