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This poster presents a physics-informed Bayesian framework—powered by a fast Fourier

Neural Operator surrogate—uses IMS infrasound to estimate explosive yield under

realistic (gravity-wave) atmospheric variability for CTBT decision support.

On decade-scale Hukkakero events (IS37, 321 km), we achieve ~4 dB TL MAE and ~4

ms inference, recover yields in the 15–30 t range with tight 95% credible intervals via

MLE+MCMC, enabling reliable yield estimations.
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❶ Surrogate Fourier Neural Operator for infrasound 

propagation 

A one-dimensional, eight-layer FNO (~3 M parameters) 

learns the mapping from atmosphere to TL and achieves ≈4 

dB MAE while evaluating a full TL field in ~4 ms (256 

ranges r × 25 frequencies f). 

❷Yield estimation with Maximum Likelihood Estimation 

and Markov Chain Monte-Carlo

Source parameters comes from numerical fits​, which 

parameterize Reed or Friedlander spectra. For a candidate 

yield, we use the surrogate to obtain TL-shaped near-

source spectra (~ 2 km) and define a likelihood from the 

absolute spectral difference to the corresponding source 

model. We first locate the maximum via MLE, then quantify 

uncertainty with a simple Metropolis–Hastings sampler 

(2,000 warm-up, 10,000 draws), which produces stable, 

narrow posteriors around the expected tens-of-tons range.
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Dataset

We aim to characterize explosive yield 

from IMS infrasound so that CTBT analysts 

can decide whether an event is consistent 

with non-nuclear activity or merits 

escalation. As a controlled case, we use 

the long-running Hukkakero chemical 

explosions in Finland—reliably recorded at 

IS37 (≈321 km)—whose yields W are in 

the 15–30 t range. 

The main obstacle is atmospheric 

variability, especially gravity-wave–driven 

wind/temperature fluctuations in the 

stratosphere that refract sound ducts and 

alter effective celerity, making propagation 

both uncertain and expensive to simulate 

numerically due to statistical dispersion. 

Our approach combines a fast, physics-

informed surrogate for propagation with a 

Bayesian inference scheme that turns 

station recordings into yield estimates with 

credible intervals. The scientific question is 

straightforward: can we reliably separate 

nuclear-scale from non-nuclear-scale 

yields under realistic atmospheric 

variability using Bayesian analysis of 

infrasound?

Methodology

We synthesize a training corpus of ~20,000 

effective-celerity profiles a representing ten years of 

Hukkakero-like conditions, with and without gravity-

wave perturbations. For each profile, a normal-

mode solver (FLOWS) provides 1D transmission 

loss u across 25 frequencies between 0.06 and 

1.5 Hz and ranges from 1 to 351 km. 

Hukkakero #96 (19 Aug 2022). Gravity-wave

perturbations drive strong dispersion in

transmission-loss across selected frequencies,

with gains up to ~20 dB; the bold black curve is

the no-GW baseline.
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Conclusion & Future DirectionsResults for Hukkakero event of 08/19/22
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frequency selection for operational deployment.
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Likelihood for each W

TL PDF û for 131 w/ GW + 1 w/o GW profiles of event  96

Single-frequency TL density and yield likelihood (W = 1–100 t). The Friedlander source 

model produces multi-modal structure: a dominant peak near ~18 t and a surface-burst alias 

close to ~36 t (≈2×), reflecting amplitude–duration ambiguity.
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