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* Seismic event detection near the M3.2 Chicago area
earthquake produced a high false positive and negative rate

* Improving detection in built environments like Chicago
requires more dynamic, human-made noise as training data

* We developed a simple workflow to detect and cluster
seismic events in two years of noisy, continuous data and
created a labeled data set of dynamic man-made noise
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Introduction

Curating Al-ready datasets of anthropogenic
seismic events is a challenging and time-
consuming task

Aims: (1) Develop a semi-automated workflow
to detect and cluster anomalous seismic
events in a unique urban and industrial
environment in the Chicago area (Fig. 1).
(2) Build a labelled dataset from clustered
events

Methodology

Stage 1: Detection via PSD misfit detector

PSD misfit: an averaged, weighted difference
between the power spectral density (PSD) of a
given 10-s window and a dynamic background
noise PSD [1]

Detection: 10-s window with a misfit > 1

Stage 2: Clustering via k-means

We trained a k-means clustering model (via
scikit-learn [2]) on 20k+ anomalous events
detected in a 3-week dataset

Table 1 lists the features we explored for the k-
means model. Features 1-4 were computed for
all three components. We removed features
that were highly-correlated (CC > 0.85).
Selected a k (number of clusters) of 12 after
qualitatively assessing clustering performance
for k=2 to k=20 in a 3-week dataset
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Table 1. Features for the K-means clustering model

/ Raw data / — ‘ PSD misfit detector ‘ — / Anomalous events / alevonty Trained k-means model | — / Clustered dataset /
Feature Description
Training l 4
events Ratio of the average absolute amplitude in the
: : : TSI 10-s to that of ding 40-s window [3
[Feature selection } - [ k selection ] — { k-means clustering ] -s to that of a preceding 40-s window [3].
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_ Table 2. Description of detected event types
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Figure 2. Examples of HQIL anomalous events in the four event types described in Table 2.Each example shows the event’s structures (requires more validation)
vertical-component waveform and spectrogram. Color scales are in units of micrometers per second.

Application & Discussion

We applied our workflow to two years of continuous HQIL data and successfully produced
coherent clusters of four event types (Fig. 2 and Table 2).

Multiple clusters belonged to the same event type. Cluster 3 (Event Type D) needed to be
manually subdivided into subclusters.

We built a labelled dataset of 1000+ clustered events, including surface quarry blasts, underground
blasts, machinery operations, and potentially-wind generated noise.

Future work: Evaluate other clustering algorithms and frequency-based model features
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